3rd World Conference on AI, ML, DS May 23, 2024

"A Digital Library to Promote Use of the World's Theses and Dissertations"

https://fox.cs.vt.edu/talks/2024/2024Eurasia3rdAIMLDSkeynoteFox.pdf

Keynote by Edward A. Fox, Ph.D., Professor

- fox@vt.edu <u>http://fox.cs.vt.edu</u>
- Dept of Computer Science (& ECE by courtesy)
- Virginia Tech, Blacksburg, VA 24061 USA
- NDLTD: Exec. Director, Chairman of the Board¹

Presentation Outline

- Acknowledgments
- NDLTD (Networked Digital Library of Theses and Dissertations: ndltd.org=theses.org)
- Intelligent Information Systems, 5S
- Digital Libraries
- Piloting: IMLS, CS5604 PBL instances
- Your To Do List

Acknowledgements (selected)

- Mentors (Licklider, Kessler, Salton); IMLS, NSF, and other sponsors
- Students, colleagues, co-investigators (selected): Lynn Abbott, Eman • Abdelrahman, Aman Ahuja, Monika Akbar, Hamed Alhoori, Pranav Angara, Ashish Baghudana, Bipasha Banerjee, Elinor Benami, Warren Bickel, Boots Cassel, Saurabh Chakravarty, Prashant Chandrasekar, Satvik Chekuri, Yinlin Chen, Kiran Chitturi, Luis Escobar, Alexandre Falcao, Weiguo Fan, Francesco Ferretti, Eric Fouh, Chris Franck, Rick Furuta, Lee Giles, Marcos André Gonçalves, Doug Gorton, Islam Harb, S.M.Shamimul Hasan, Chongyu He, Michael Hsiao, Bill Ingram, Jeremy Jenrette, Palakh Jude, Adheesh Juvekar, Sampanna Kahu, Tarek Kanan, Ola Karajeh, Andrea Kavanaugh, Martin Klein, Harinni Kumar, Spencer Lee, Sunshin Lee, Jonathan Leidig, Lin Tzy Li, Liuqing Li, Yi Ma, Yufeng Ma, Mohamed Magdy, Shivam Maharshi, Madhav Marathe, Gary Marchionini, Paul Mather, Maanav Mehrotra, Uma Murthy, Pranav Nakate, Michael Nelson, Sanghee Oh, Sung Hee Park, Supritha Patil, Denilson Pereira, Jeff Pomerantz, Naren Ramakrishnan, Sagnik Ray-Choudhury, Chandan Reddy, Aditya Shah, Rao Shen, Ziqian Song, Venkat Srinivasan, Jeff Stein, Hussein Suleman, Allison Tegge, Ricardo Torres, Adithya Upadhya, Saket Vishwasrao, Xinyue Wang, Barbara Wildemuth, Jian Wu, Zhiwu Xie, Seungwon Yang, Xuan Zhang, ...

Related Funded Grants

- IMLS LG-37-19-0078-19: Opening Books and the National Corpus of Graduate Research. 2019-2023. PI: William A. Ingram, Co-PIs: Edward A. Fox and Jian Wu: <u>https://opening-etds.github.io/</u>
- 2. Indo-US S&T Forum: Open Digital Libraries and Interoperability Workshop, 2003, PI Fox; Co-chairs: Shalini Urs, Mohammad Zubair, N. Balakrishnan
- 3. NSF IIS-0086227: Open Archives: Distributed services for physicists and graduate students (OAD): 2001-2004; PD Fox; German DFG PI E. Hilf
- 4. UNESCO: International Guide for the Creation of Electronic Theses and Dissertations: 12/28/2000-3/31/2002. PD (Project Director) E. Fox
- 5. SOLINET (Southeastern Library Network, USA): Networked Digital Library of Theses and Dissertations: 2000. Project director Fox
- NSF IIS-0090153 (427963): US-Korea Joint Workshop on Digital Libraries: Removing Barriers to International Collaboration on Research and Education through Digital Libraries, 8/1/2000-9/30/2002. Project director Fox, co-PIs R.L. Larsen, R. W. Moore
- U.S. Dept. of Education, FIPSE Program P116B61190: Improving Graduate Education with a National Digital Library of Theses and Dissertations: 1/996-99; PIs Fox, J. Eaton, G. McMillan; support by SURA, Microsoft, Adobe

Selected ETD-related VT ETDs

- William Ingram, Digital Libraries of Electronic Theses and Dissertations, 2025
- Satvik Chekuri, Scholarly Information System for Long Documents and their Elements, 2025
- Bipasha Banerjee. Improving access to ETD elements through chapter categorization and summarization, Summer 2024
- Aman Ahuja. Analyzing and Navigating Electronic Theses and Dissertations", 2023
- Dhanush Dinesh, Utilizing Docker and Kafka for Highly Scalable Bulk Processing of Electronic Theses and Dissertations (ETDs), 2023
- Javaid Manzoor, Segmenting Electronic Theses and Dissertations by Chapters, 2022
- Prashant Chandrasekar, Continuously Extensible Information Systems: Extending the 5S Framework by Integrating UX and Workflows, 2021
- Sampanna Kahu, Figure extraction from scanned electronic theses and dissertations,2020
- Palakh Mignonne Jude, Increasing Accessibility of Electronic Theses and Dissertations (ETDs) Through Chapter-level Classification, 2020
- Sung Hee Park, Discipline-Independent Text Information Extraction from Heterogeneous Styled References Using Knowledge from the Web, 2013
- W. Ryan Richardson, Using Concept Maps as a Tool for Cross-Language Relevance Determination, 2007
- Douglas Gorton, Practical Digital Library Generation into DSpace with the 5S Framework, 2007
- Hussein Suleman. Open Digital Libraries. 2002

NDLTD: Mission

The Networked Digital Library of Theses and Dissertations (NDLTD) is an international organization dedicated to promoting the adoption, creation, use, dissemination, and preservation of electronic theses and dissertations (ETDs). We support electronic publishing and open access to scholarship in order to enhance the sharing of knowledge worldwide. Our website includes resources for university administrators, librarians, faculty, students, and the general public. Topics include how to find, create, and preserve ETDs; how to set up an ETD program; legal and technical questions; and the latest news and research in the ETD community. 6

J-ETD.org, j-etd@ndltd.org Journal of Electronic Theses and Dissertations

- Open-access launch 1/1/2021. Please support!
- Managing Editor: Charles J. Greenberg
- Executive Editor: Edward A. Fox; Associate Editors : Suzanne Lorraine (Suzie) Allard (USA), Ramesh C. Gaur (India), Charles J. Greenberg (USA), Libio Huaroto (Peru), William A. Ingram (USA), Ana Sofia de Sousa Machado Mota (Portugal), Prashant Pandey (Australia), Ana Pavani (Brazil), Joachim Schöpfel (France), Janette Wright (UAE) 7

search.ndltd.org

Global ETD Search

Search the 6,480,478 electronic theses and dissertations contained in the NDLTD archive:

Type something to start searching...

advanced search tips 🗙 how to contribute records 🗲

Q

Scenarios of Future Use of ETD DLs

- 1. Open problem -> plan for research
- 2. Problem -> list of references, related ETDs
- 3. Bibliography -> clusters -> lit. review chapter
- 4. Course (e.g., seminar) units based on ETDs
- 5. Final defense -> told missing cites of related ETDs
- 6. Promotion: impact of candidate's students' ETDs
- 7. Research trends: classification, topic modeling
- 8. Analysis & Assessment -> logs -> use by:
 - Local grad students, faculty, undergrads
 - Graduate School, Registrar, Research Division

Scenarios of Future Use: Example: Open problem -> plan for research

- 1. Student volunteers to pilot test the new DL
- 2. Goal: find problem to solve
- 3. Explains her interest and background
- 4. Receives extracts from related ETDs:
 - open problems, planned future work
- 5. Selects top 5
- 6. Receives related ETD list, with chapter summaries
- 7. Fetches and studies top 2 ETDs from the list
- 8. Meets advisor to devise research plan

Intelligent Information Systems

- Digital libraries, repositories
- Search engines, recommenders
- Chatbots
- Bots
- Smart homes, smart cities
- Robots
- (Semi)autonomous vehicles, UAVs
 - Land: Cars, Trucks
 - Air: Planes, Drones
 - Sea: Boats, UUVs

Societies

Scenarios

Spaces

Structures

Streams

Theoretical Foundations for Digital Libraries

The 5S (Societies, Scenarios, Spaces, Structures, Streams) Approach

> Edward A. Fox Marcos André Gonçalves Rao Shen

Synthesis Lectures on Information Concepts, Retrieval, and Services

Ganyy Mlanchiiomimii, Semiles Edlitton

Key Issues in Digital Libraries

Integration and Evaluation

Rao Shen Marcos André Gonçalves Edward A. Fox

Synthesis Lectures on Information Concepts, Retrieval, and Services

Gary Marchionini, Series Editor

Digital Library Technologies Complex Objects, Annotation, Ontologies, Classification, Extraction, and Security

it dend further by destribution into rest

in eScience, focusing, in particular, on cyber-infrastructure for simulation. Chapter 5 surveys geospatial information in DLs, with a case study. A state of the consistence of the state o

tal libraries. Chapter 3 covers social networks, which are at the heart of work on Web 2.0, explaining the construction and use of deduced graphs, that can enhance retrieval and recommendation. Chapter 4 demonstrates the value of DLs

as well as a practice. We hope it will help build community that will address the needs of the next generation of DLs (Granyy Manchhiconinni), Starias Illillitator

ABOUT SYNTHESIS

FOX• LEIDIG

DIGITAL LIBRARIES APPLICATIONS

MORGAN & CLAYPOOL

MORGAN & CLAYPOOL PUBLISHERS

Digital Libraries Applications CBIR, Education, Social Networks, eScience/Simulation, and GIS

Edward A. Fox Jonathan P. Leidig

Synythieses Lechures on Information Concepts, Restrieval, and Services

Garryy Mandhiicomiimii, Semiess Hiddittom

Digital

widespro field that

other DI and is lik This b the conto new rese those int Chapt tems. Ch

&

ISBN: 978-1-62705-032-6 90000

9 781627 050326

Informal 55 & DL Definitions

DLs are complex systems that

- help satisfy info needs of users (societies)
- provide info services (scenarios)
- organize info in usable ways (structures)
- present info in usable ways (**spaces**)
- communicate info with users (**streams**)

Digital Libraries: Content

Supporting Services across the Lifecycle

Infrastructu	Information Setisfaction		
Repository-Building		Add	Services
<u>Creational</u>	Preservational	Value	
Acquiring Cataloging Crawling (focused) Describing Digitizing Federating Harvesting Purchasing Submitting	Conserving Copying/Replicating Emulating Renewing Translating (format)	Annotating -> Classifying -> Clustering Evaluating -> Extracting -> Indexing Measuring Publicizing Rating Reviewing (peer) Surveying Translating (language)	Browsing ← Collaborating Customizing Filtering Providing access Recommending ← Requesting Searching ← Visualizing ←

Quality Dimensions

DL Concept	Dimensions of Quality
Digital object	Accessibility
	Pertinence
	Preservability
	Relevance
	Similarity
	Significance
	Timeliness
Metadata specification	Accuracy
	Completeness
	Conformance
Collection	Completeness
	Impact Factor
Catalog	Completeness
	Consistency
Repository	Completeness
	Consistency
Services	Composability
	Efficiency
	Effectiveness
	Extensibility
	Reusability
	Reliability

Scenarios of Future Use / Building DLs

- 1. UX: Customer discovery: subject-matter experts
- 2. UX: Validated list of:
 - Jobs-to-be-done, tasks, sub-tasks, goals, sub-goals
- 3. Personas
 - 1. Curators
 - 2. Experimenters
 - 3. Researchers (students, faculty, ...)
- 4. DL software developer: knowledge graph mapping:
 - Goals, Sub-goals, Tasks, Sub-tasks
 - Workflows of services: Existing, Desired
- 5. Operations (Docker, Airflow; DevOps with CI/CD)

(Doctoral work of Prashant Chandrasekar)

Prashant Chandrasekar's DL Architecture

http://hdl.handle.net/10919/103815, https://doi.org/10.2478/dim-2021-0003

Workflow-defining Goal Decomposition

Opening Graduate Research IMLS; 2019-2023; PI: William Ingram

- Activities
 - Collecting: 500,000+ from USA
 - Large universities, HBCUs, HSIs + Arabic corpus
 - Analyzing: parsing / detecting (texts, images)
 - Extracting: tables, figures, equations, references...
 - Scanned ETDs -> improved metadata
 - Classification, Topic Modeling -> Browsing
 - Segmenting: chapters -> Chapter summaries
- Results: New methods & technologies, pilot system (search, browse, recommend, viz) ²²

CS5604 SMEs

- Aman Ahuja: topic modeling, object detection/document parsing (http://hdl.handle.net/10919/115817)
- Bipasha Banerjee, Sara Ahmadi: segmentation, language models, transformers, classification, summarization
- Prashant Chadrasekar, Dhanush Dinesh: integration, workflows, extensibility, DevOps
- Satvik Chekuri: search, recommendation
- Sung Hee Park, Bill Ingram: database, file²³

CS5604 Fall 2023 Teams

CS5604 ETD Team: Figure Extraction

Inference is accomplished via the best performing model trained by Sampanna and others

microscope observations of live bundles, and studies of kinocilium height (Fontilla and Peterson, 2000), were used to define heights of stereocilia and the kinocilium. The height data was obtained from various bundles that were different from, but similar to, the original bundle. In this manner a realistic representation of a bundle was assembled. The computer-generated graphic for each bundle in Figure 2.2 is based on the model input into *bmod*, and shows the deformed state of the bundle. Although it may not be clear from Figure 2.2, cells 1, 2, 4, and 5 are "loose-packed", and cells 3 and 6 are "tight-packed", as defined in Chapter 1.

Figure 2.2: Six utricle cells - electron micrograph and 3-D rendering

Obviously, many approximations were made in modeling the cell bundles. Stereocilia diameters and spacing were approximated as constant throughout a given bundle. Perfect hexagonal layouts do not exist in biological bundles, but they are much easier to model. Cilia heights were based on similar bundles, and were approximated so as to linearly decrease in height along the E-I axis. Tapering at the base of stereocilia was

CHAPTER 2: METHODS AND MATERIALS

18

Page image(s)

microscope observations of live bundles, and studies of kinocilium height (Fontilla and Peterson, 2000), were used to define heights of stereocilia and the kinocilium. The height data was obtained from various bundles that were different from, but similar to, the original bundle. In this manner a realistic representation of a bundle was assembled. The computer-generated graphic for each bundle in Figure 2.2 is based on the model input into *bmod*, and shows the deformed state of the bundle. Although it may not be clear from Figure 2.2, cells 1, 2, 4, and 5 are "loose-packed", and cells 3 and 6 are "tight-packed", as defined in Chapter 1.

Obviously, many approximations were made in modeling the cell bundles. Stereocilia diameters and spacing were approximated as constant throughout a given bundle. Perfect hexagonal layouts do not exist in biological bundles, but they are much easier to model. Cilia heights were based on similar bundles, and were approximated so as to linearly decrease in height along the E-I axis. Tapering at the base of stereocilia was

CHAPTER 2: METHODS AND MATERIALS

18

Page image(s) with image bound information

CS5604 ETD Team: Cropping

microscope observations of live bundles, and studies of kinocilium height (Fontilla and Peterson, 2000), were used to define heights of stereocilia and the kinocilium. The height data was obtained from various bundles that were different from, but similar to, the original bundle. In this manner a realistic representation of a bundle was assembled. The computer-generated graphic for each bundle in Figure 2.2 is based on the model input into *bmod*, and shows the deformed state of the bundle. Although it may not be clear from Figure 2.2, cells 1, 2, 4, and 5 are "loose-packed", and cells 3 and 6 are "tight-packed", as defined in Chapter 1.

Obviously, many approximations were made in modeling the cell bundles. Stereocilia diameters and spacing were approximated as constant throughout a given bundle. Perfect hexagonal layouts do not exist in biological bundles, but they are much easier to model. Cilia heights were based on similar bundles, and were approximated so as to linearly decrease in height along the E-I axis. Tapering at the base of stereocilia was

CHAPTER 2: METHODS AND MATERIALS

18

Page image(s) with image bound information

Cropped images

CS5604 ETD Team: Ch. Segmentation

Dale

Analysis of Vestibular Hair Cell Bundle Mechanics Using

Finite Element Modeling

Joseph Allan Silber

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Engineering Mechanics

I Wallace Grant Chair Ellengene H. Peterson John R. Cotton

November 18, 2002 Blacksburg, Virginia

Keywords: Vestibular System, Hair Cell, Finite Element

Copyright 2002, Joseph A. Silber

CHAPTER 1: INTRODUCTION AND BACKGROUND

Dala				
body on th	CHAPTER	2: METHO	DS AND MAT	TERIALS
vestibular sy	Most			
the brain wi	example, Jaco	CHAPTE	R 3. THREE.	DIMENSIONAL BUNDLE
The	model bundle	MECHAN	ICS	DIMENSIONAL DONDLE
labyrinth p	called "lump			
semicircula	each other by	As	CHAPTER	4. ION CATES
detect orient	1993).	experiments	CHAITER	4. ION GATES
of the head	Cottor	particular, ti	Recall	
inside these	dimensional	response of	responsible fo	CHAPTER 5: CONCLUS
stimulus int	research pres		of a drop in t	If one were to try and sum up
more detail	to his disserta	Procedure	in the range o	statement perhaps the best summa
	the program	Deta	some disagree	complex and all details are important
The Semi	method, deta	Chapter 2. U	increased tens	Accurate knowledge of the
The	modifications	the kinocilit	thus reducing	numbers of and locations of cilia and
detect an ar	cell bundles t	Recall that i	efforts to inco	stiffness as elaborated on in chapte
acceleration	Model Fea	line of symr	tension when	such as stereocilia base tapering and
Rece		the line of s	variable tip lin	Certainly modeling a bundle as a sit
epithelium l	As ex	and the resu	Tin Link L	information and can give incorrect re
above the a	Timoshanka	Tip Link	пр Ешк ц	Equally important in accurate
up into the	un into eleme	пр Ешк	Procedure	moduli and shear moduli. Of particu
acts on and	bottom Each	Results	Since	is important both in affecting overall
This mecha	of rotation (r	The	functions to c	of the theorized ion gated channels.
system acco	equations use	occurred un	opted to set a	All of these factors are of ex
	stiffness mat	and each lin	the threshold	The complexities of dynamic respor
	process can b	tension (in p	program itera	on these (and other) factors.
	Recal	next taller c	if a gate oper	The implications of these co

of a drop in in the range of some disagree increased tens thus reducing efforts to inco tension when variable tip lin Tip Link Ic Procedure

To cre

un-deformed

This increase

that tension iteration, clos relative valu the program f

CHAPTER 5: CONCLUSIONS AND FUTURE WORK

If one were to try and sum up the conclusions obtained from this research into one statement, perhaps the best summary would be to say that bundles are mechanically complex, and all details are important in accurately modeling them

Accurate knowledge of the geometry of a bundle is crucial. Cilia diameters, numbers of and locations of cilia, and cilia heights all have significant effects on bundles stiffness, as elaborated on in chapter 3. Although not discussed in detail, even factors such as stereocilia base tapering, and tip link diameters can noticeably influence stiffness. Certainly, modeling a bundle as a simple row or column neglects a significant amount of information and can give incorrect results.

Equally important in accurate modeling are the material properties, such as elastic moduli and shear moduli. Of particular importance is the tip link elastic modulus, which is important both in affecting overall bundle stiffness, as well as influencing the behavior of the theorized ion gated channels.

All of these factors are of extreme importance just in static response of bundles! The complexities of dynamic response are surely even more challenging and dependent on these (and other) factors.

The implications of these conclusions are three-fold. First, and unsurprisingly, better information about bundles is needed to improve modeling efforts. The material properties of tip and lateral links need to be known more precisely. Unfortunately, it is currently impossible to measure these properties directly; testing values in a model is presently the best possible way to determine these values. Geometric properties of individual bundles being modeled need to be measured more exactly. The details are important; rough estimates are insufficient. The importance of the stereocilia/kinocilium height ratio suggests that accurate height data is particularly crucial, but cilia diameters, taper ratios, and other values are also vital. Second, modeling needs to be as precise as possible. Lumped parameter models and simple 2-D row models are not sufficient. They

Chapter fulltext

CS5604 ETD Team: Text Extraction

Extract text from PDF page. Write the text into a .txt file. Repeat until finish all PDF pages.

Analysis of Vestibular Hair Cell Bundle Mechanics Using Finite Element Modeling

Joseph Allan Silber

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Engineering Mechanics

J.Wallace Grant, Chair Ellengene H. Peterson John R. Cotton

November 18, 2002 Blacksburg, Virginia

Keywords: Vestibular System, Hair Cell, Finite Element

Copyright 2002, Joseph A. Silber

ph_Silber_Thesis,pdf.tt - Notepad it Format View Help lvsis of Vestibular Ha

Analysis of Vestibular Hair Cell Bundle Mechanics Using Finite Element Modeling

Joseph Allan Silber

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Engineering Mechanics

J.Wallace Grant, Chair Ellengene H. Peterson John R. Cotton

November 18, 2002 Blacksburg, Virginia

Keywords: Vestibular System, Hair Cell, Finite Element

Copyright 2002, Joseph A. Silber

Extracted Text

Ln 1, Col 1 100% Unix (LF) UTF-8

CS5604 ETD Team: Classification

File Edit Format View Help

Analysis of Vestibular Hair Cell Bundle Mechanics Using Finite Element Modeling

Joseph Allan Silber

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Engineering Mechanics

J.Wallace Grant, Chair Ellengene H. Peterson John R. Cotton

November 18, 2002 Blacksburg, Virginia

Keywords: Vestibular System, Hair Cell, Finite Element

Copyright 2002, Joseph A. Silber

Extracted Text

w <dublin_core schema="dc">

- <dcvalue element="contributor" qualifier="author" language="en_US">Silber, Joseph Allan</dcvalue>
- <dcvalue element="date" qualifier="accessioned" language="">2011-08-06T14:45:39Z</dcvalue>
- <dcvalue element="date" qualifier="available">2011-08-06T14:45:39Z</dcvalue>
- <dcvalue element="date" qualifier="issued" language="en_US">2002-11-18</dcvalue>
- <dcvalue element="identifier" qualifier="other" language="en_US">etd-12012002-165307</dcvalue>
- <dcvalue element="identifier" qualifier="uri">http://hdl.handle.net/10919/9704</dcvalue>

<dcvalue element="description" qualifier="abstract" language="en_US">The vestibular system of vertebrates consists of the utricle canals. Head movement causes deformation of hair cell bundles in these organs, which translate this mechanical stimulus into an e nervous system. This study consisted of two sections, both utilizing a Fortran-based finite element program to study hair cell bun the effects of variations in geometry and material properties on bundle mechanical response were studied. Six real cells from the were modeled and their response to a gradually increased point load was analyzed. Bundle stiffness and tip link tension distribut

Dublin Core XML

Subject: ["Biomedical Engineering"]

Labels for ETD

Example: ETD-Topics (Architecture)

Aman Ahuja, William A. Ingram, Chenyu Mao, Chongyu He, Jianchi Wei and Edward A. Fox.
Analyzing and Navigating ETDs Using Topic Models.
ETD 2022 conference, Novi Sad, Serbia, September 7-9, 2022

Your To Do List

- Use, and Encourage Others to Use: http://search.ndltd.org/
- Support NDLTD(.org) and Worldwide ETD Requirements
- Use Digital Libraries and Repositories
- Improve Information Systems using 5S & AI
- Apply PBL in Courses (or Help as a SME)

Questions? Discussion?

Thank You!

fox@vt.edu

fox@ndltd.org

j-etd@ndltd.org

https://fox.cs.vt.edu/cv.htm