Transactional Web Archives

Robert Sanderson
Lyudmila Balakireva
Harihar Shankar
Herbert Van de Sompel

Los Alamos National Laboratory Research Library

Web Archive Globalization JCDL 2011, Ottawa Jun 16-17, 2011

This research is funded by the Library of Congress

Transactional Web Archiving

- Transactional Archiving?
- Server Side Capture
 - Submission, Storage, Access
- Browser Side Capture
 - Submission, Storage, Access
- Memento for Access

Transactional Archiving?

Current web archives actively crawl the web

• For example, Heritrix from the Internet Archive and the many archives that use it

Transactional Archiving?

 Transactional archives passively accept submitted HTTP transactions between browser and server

For example, TTApache, PageVault and Everlast.

Why Transactional Archiving?

- Issues with crawler based archiving:
 - Can be rejected (robots.txt, by user-agent, by host IP)
 - Can be deceived (cloaking: geo-location, by user-agent)
 - Can be trapped (infinite auto-generated pages)
 - Don't necessarily capture well used resources
 - Require constant and massive bandwidth

- None of these are true for Transactional Archiving ...
- ... but, it has its own different set of challenges

Transactional Archiving?

- Need to record transactions between browser and server
 - Server side: Servers to be archived must cooperate
 - Browser side: Many browsers must cooperate
- Need to transfer data to archive: either batch mode or real-time
- Archive must trust submission to be authentic
- Deduplication challenges as can't control what will be submitted:
 - Aliases: Different URL, same response
 - Negotiation: Same URL, different response
 - Determine "significant" change in response
 - Other factors for what to archive/throw away?

Server Side Capture

Approach:

- Willing server records the request and response headers and response body just before returning to the browser
- Server sends to an archive for storage

Server Side Capture/Submission

- Developer: Luda Balakireva
- Capture Implementation
 - Apache connection filter module implemented in C to trap URL, headers and response body
 - Module POSTs to a configurable URL in real time
- Submission Implementation
 - Java/Grizzly+Jersey for handling submission interface
 - Can also be deployed under tomcat or glassfish
 - BerkeleyDB for storing metadata
 - Headers and response body data stored in file system

Server Side Capture

- Direct server to server upload, in real time:
 - Most configurations will have server/archive in close network proximity
 - Reduces wait time between observation and being discoverable in archive

Server Side Capture: Issues

- If archive is not local, network latency may be an issue
 - But could be amortized by batch upload
- Size of dataset could very large for dynamically generated pages
 - But could be reduced by better detection of high value changes compared to counters, timestamps, etc.
- Content Negotiation problematic!
- Capture of pages with "attack vector" query params
 - index.html?f=/etc/passwd

Browser Side Capture

Approach:

- Willing browser records the request and response headers and response body after receiving from server
- Browser sends to an archive for storage

Browser Side Capture/Submission

- Developer: Rob Sanderson
- Capture Implementation
 - Firefox add-on captures headers and body and writes to temporary storage on local disk
 - After configurable amount of data stored, module compresses and moves to a shared Dropbox folder for batch upload
 - (Limited) Ability to detect and ignore private data
- Submission Implementation
 - Dropbox used as transfer, temporary storage mechanism
 - Python monitor system on top of Dropbox
 - Cassandra (NoSQL hash store) for storing metadata
 - Response body and headers stored in pair-tree file system

Browser Side Submission

- Reasons for Dropbox rather than direct upload:
 - Batch upload via existing infrastructure reduces bandwidth
 - Increases Firefox responsiveness
 - Batch processing can be scheduled as needed

Browser Side Capture/Submission

Memento: Transactional Archiving

Web Archive Globalization Workshop, Jun 16-17 2010

Browser Side: Issues

- Privacy! Privacy! Privacy!
 - Difficult to determine if resource should be captured or not
 - Current approach:
 - No HTTPS
 - Check for "log out", "sign out" etc in body
 - Check for usernames, personal name in body, headers
 - Blacklist for domains
- Bandwidth
 - Slow-down while uploading batch file noticable on home connections

Memento in One Slide

Access via Memento

- Both archives provide Memento TimeGates for access
- TimeGates can be used with MementoFox:
 - Endorsed Firefox add-on: http://bit.ly/memfox
 - Must be configured with Dropbox archive TimeGate
 - Processes every HTTP request, not just HTML page
- Distributed access is intentional design feature
 - Possible to construct views from multiple archives:
 Server side will have most authentic copy, but may embed image from another server, only in Dropbox archive

Server Side Archive: Access

- Access to archive via Memento TimeGate
 - Implemented in Grizzly server using Jersey library
- Original Server uses HTTP Link header to point to archive
- Export functionality also available to WARC format to extract data in batch mode
 - By datetime of last update
 - By URL

Browser Side Archive: Access

- Apache/Python Memento TimeGate for access
 - Archive provides combined, anonymous TimeGate
 - Also provides per-user TimeGates to see own archive
 - Per-User currently secure only through obscurity
 - Export functionality also yet to be implemented

Access via Memento

Summary

- Implemented and tested two types of Transactional Archive:
 - Server Side
 - Browser Side
- Transactional Archives lack many of the challenges of Crawler based Archives (but have their own)
- Implemented Memento TimeGates for Transactional Archives:
 - Does not require rewriting URIs for self-contained-ness
 - Works well with automated, distributed access patterns
- Access via Browser add-on is fast and seamless
- Server and Browser archiving code will be released

Memento wants to make Navigating the Web's Past Easy

Learn: http://www.mementoweb.org/

Talk: http://groups.google.com/group/memento-dev

Use: http://bit.ly/memfox

