%A R. Kowalski %T The relation between logic programming and logic specification %B Mathematical logic and programming languages %E C.A.R. Hoare %E J.C. Shepherdson %S Series in Computer Science %I Prentice-Hall International %C Englewood Cliffs, New Jersey %D 1985 %K mlpl %P 11-27 %A D.A. Turner %T Functional programs as executable specifications %B Mathematical logic and programming languages %E C.A.R. Hoare %E J.C. Shepherdson %S Series in Computer Science %I Prentice-Hall International %C Englewood Cliffs, New Jersey %D 1985 %K mlpl %P 29-54 %A D.I. Good %T Mechanical proofs about computer programs %B Mathematical logic and programming languages %E C.A.R. Hoare %E J.C. Shepherdson %S Series in Computer Science %I Prentice-Hall International %C Englewood Cliffs, New Jersey %D 1985 %K mlpl %P 55-75 %A R. Milner %T The use of machines to assist in rigorous proof %B Mathematical logic and programming languages %E C.A.R. Hoare %E J.C. Shepherdson %S Series in Computer Science %I Prentice-Hall International %C Englewood Cliffs, New Jersey %D 1985 %K mlpl %P 77-88 %A E.M. Clarke,\ Jr. %T The characterization problem for Hoare logics %B Mathematical logic and programming languages %E C.A.R. Hoare %E J.C. Shepherdson %S Series in Computer Science %I Prentice-Hall International %C Englewood Cliffs, New Jersey %D 1985 %K mlpl %P 89-106 %A L.G. Valiant %T Deductive learning %B Mathematical logic and programming languages %E C.A.R. Hoare %E J.C. Shepherdson %S Series in Computer Science %I Prentice-Hall International %C Englewood Cliffs, New Jersey %D 1985 %K mlpl %P 107-112 %A J.R. Abrial %T Programming as a mathematical exercise %B Mathematical logic and programming languages %E C.A.R. Hoare %E J.C. Shepherdson %S Series in Computer Science %I Prentice-Hall International %C Englewood Cliffs, New Jersey %D 1985 %K mlpl %P 113-139 %A C.A.R. Hoare %T Programs are predicates %B Mathematical logic and programming languages %E C.A.R. Hoare %E J.C. Shepherdson %S Series in Computer Science %I Prentice-Hall International %C Englewood Cliffs, New Jersey %D 1985 %K mlpl %P 141-155 %A E.W. Dijkstra %T Invariance and non-determinacy %B Mathematical logic and programming languages %E C.A.R. Hoare %E J.C. Shepherdson %S Series in Computer Science %I Prentice-Hall International %C Englewood Cliffs, New Jersey %D 1985 %K mlpl %P 157-165 %A P. Martin-Lof %T Constructive mathematics and computer programming %B Mathematical logic and programming languages %E C.A.R. Hoare %E J.C. Shepherdson %S Series in Computer Science %I Prentice-Hall International %C Englewood Cliffs, New Jersey %D 1985 %K mlpl %P 167-184