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Analyzing and Navigating Electronic Theses and Dissertations

Aman Ahuja

(ABSTRACT)

Electronic Theses and Dissertations (ETDs) contain valuable scholarly information that can

be of immense value to the scholarly community. Millions of ETDs are now publicly available

online, often through one of many digital libraries. However, since a majority of these digital

libraries are institutional repositories with the objective being content archiving, they often

lack end-user services needed to make this valuable data useful for the scholarly community.

To effectively utilize such data to address the information needs of users, digital libraries

should support various end-user services such as document search and browsing, document

recommendation, as well as services to make navigation of long PDF documents easier. In

recent years, with advances in the field of machine learning for text data, several techniques

have been proposed to support such end-user services. However, limited research has been

conducted towards integrating such techniques with digital libraries.

This research is aimed at building tools and techniques for discovering and accessing the

knowledge buried in ETDs, as well as to support end-user services for digital libraries, such

as document browsing and long document navigation. First, we review several machine

learning models that can be used to support such services. Next, to support a comprehensive

evaluation of different models, as well as to train models that are tailored to the ETD data,

we introduce several new datasets from the ETD domain. To minimize the resources required

to develop high quality training datasets required for supervised training, a novel AI-aided

annotation method is also discussed. Finally, we propose techniques and frameworks to



support the various digital library services such as search, browsing, and recommendation.

The key contributions of this research are as follows:

• A system to help with parsing long scholarly documents such as ETDs by means of

object-detection methods trained to extract digital objects from long documents. The

parsed documents can be used for further downstream tasks such as long document

navigation, figure and/or table search, etc.

• Datasets to support supervised training of object detection models on scholarly doc-

uments of multiple types, such as born-digital and scanned. In addition to manually

annotated datasets, a framework (along with the resulting dataset) for AI-aided anno-

tation also is proposed.

• A web-based system for information extraction from long PDF theses and dissertations,

into a structured format such as XML, aimed at making scholarly literature more

accessible to users with disabilities.

• A topic-modeling based framework to support exploration tasks such as searching

and/or browsing documents (and document portions, e.g., chapters) by topic, docu-

ment recommendation, topic recommendation, and describing temporal topic trends.
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(GENERAL AUDIENCE ABSTRACT)

Electronic Theses and Dissertations (ETDs) contain valuable scholarly information that can

be of immense value to the research community. Millions of ETDs are now publicly available

online, often through one of many online digital libraries. However, since a majority of these

digital libraries are institutional repositories with the objective being content archiving,

they often lack end-user services needed to make this valuable data useful for the scholarly

community. To effectively utilize such data to address the information needs of users, digital

libraries should support various end-user services such as document search and browsing,

document recommendation, as well as services to make navigation of long PDF documents

easier and accessible. Several advances in the field of machine learning for text data in recent

years have led to the development of techniques that can serve as the backbone of such

end-user services. However, limited research has been conducted towards integrating such

techniques with digital libraries. This research is aimed at building tools and techniques

for discovering and accessing the knowledge buried in ETDs, by parsing the information

contained in the long PDF documents that make up ETDs, into a more compute-friendly

format. This would enable researchers and developers to build end-user services for digital

libraries. We also propose a framework to support document browsing and long document

navigation, which are some of the important end-user services required in digital libraries.
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Chapter 1

Introduction

1.1 Background and Motivation

Scholarly documents like ETDs contain important research findings, which are of value to a

diverse group of users from the scholarly community. Examples of such users include students

and researchers who want to review work related to their research area, as well as librarians

and university administrators who want an overview of recent research in their institutions.

With the vast amount of research being conducted across a variety of domains, millions of

ETDs are now publicly available online. However, digital library services for ETDs have not

evolved past simple search and browse at the metadata level, thus rendering the vast amount

of information from these documents underutilized.

In recent years, advances have been made in NLP-based techniques such as topic modeling,

question-answering and text summarization, which might be incorporated to make ETDs

more accessible. However, a majority of these documents exist as PDF files, and are often

long and filled with highly specialized details. While some tools can work with these files,

the results we have observed have been poor; other tools require data in a structured format

such as XML. Accordingly, there is a need to build electronic infrastructure that can leverage

the rich scholarly information contained within ETDs and make it accessible to the wider

community.
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1.2 Problem Statement

This thesis aims to develop methodologies that can support making the knowledge contained

in ETDs more accessible for digital library users. Although a comprehensive digital library

system should ideally support multiple end-user services, like browsing, search, retrieval, and

question-answering, the foremost requirement for any such service is to have data available

in a structured, machine-friendly format such as XML. Hence, a major contribution of this

thesis would be a framework to parse ETDs in PDF to structured formats like XML. The

parsed document can then be employed for training models for supporting end-user services.

It can also be helpful in making long documents more accessible by breaking them down into

multiple smaller components like chapters and sections. Moreover, structured representations

such as XML can be used to develop web-based systems, which have better compatibility with

accessibility tools such as on-screen readers, thus allowing those with disabilities to access this

information. Given the recent success of object detection models in document layout analysis,

we will take the object detection approach for this work. We will develop methodologies

that can address several challenges that arise in the process of parsing long PDF documents.

These include limited availability of training data, heterogeneity in document types, the

imbalanced number of elements in the various classes, and the resource-intensive nature of

dataset annotation. Unfortunately, there is no mechanism for parsing extracted objects to

determine relationships among them, and converting them into a structured format to make

them accessible to users with special needs.

We also will investigate how this parsed information can be used for downstream tasks. Re-

garding the scope of this work, we will focus on techniques that can be helpful in navigating

and browsing documents from a digital library. For example, consider that the most intuitive

way of making a browsing system is to group items by categories. Users can select a cate-



gory of their preference and browse the respective documents. However, in case of scholarly

documents, grouping documents by research areas is a non-intuitive task, since many doc-

uments only contain subject/department level information, which is often very high level.

It is hard to classify documents based on pre-defined categories, due to the absence of a

unified list of categories and the datasets essential for training such models. Hence, we will

study unsupervised methods such as topic modeling for this task. The resultant topics or

categories, as well as their respective documents, can then be used for supporting document

browsing by research area in a digital library.

1.3 Research Hypotheses

The central hypotheses of this research are listed below:

• H1: Object detection based document layout analysis methods for long scholarly docu-

ments, trained on high quality domain-specific labeled data, perform better than those

trained on a larger dataset originating from other related domains, such as research

papers.

• H2: Pre-training on other scholarly datasets, albeit from a different domain such as

research papers, improves the performance of document layout analysis methods on

long scholarly documents such as ETDs.

• H3: Training on derived datasets, such as augmented versions of the original training

data, can significantly improve the performance of layout analysis models.

• H4: To perform well on other document types, such as scanned documents, models

trained on a specific type of documents, such as born-digital ones, require additional

training using techniques, like augmentation, that help bridge the distribution gap.

• H5: AI-aided annotation methods, such as using models trained on existing smaller



datasets to extract weak labels for unlabeled data, reduce the resources required for

annotating additional data.

• H6: Models trained on datasets with skewed distributions in terms of class labels

achieve better performance on minority classes when trained on additional data from

those classes, such as from AI-aided annotation methods.

• H7: Combining the predictive power of AI models with rules formulated based on

domain expertise possessed by humans reduces errors in predictive tasks such as doc-

ument structure parsing.

• H8: Neural topic models can outperform other traditional topic models, such as LDA,

while doing topic modeling on scholarly documents such as ETDs and their chapters.

1.4 Research Questions

Based on the hypotheses listed above, the work proposed in this thesis will focus on the

following research questions:

• R1: What are the different elements that are important in an ETD that can be helpful

for training machine learning models for downstream tasks like searching, browsing,

question-answering, etc.? How can we develop a dataset that can support training

supervised machine learning models to extract these elements from an ETD?

• R2: Are datasets from other related domains, such as research papers, sufficient to

train layout analysis methods for ETDs? How can these datasets benefit layout analysis

methods for ETDs, when used in conjunction with domain specific datasets?

• R3: What type of augmentation strategies can be used to derive more training data

for object detection models? How can we use augmented datasets to improve the

performance of object detection models?



• R4: Can document analysis methods trained on documents of one type, such as digital

PDF documents, facilitate document analysis on other types of documents, such as

scanned documents?

• R5: How can annotation methods utilize the power of models trained on existing

datasets, to reduce the resources required in the annotation process?

• R6: How can we improve the performance of machine learning models, especially on

minority classes, using datasets developed using AI-aided annotation?

• R7: How can domain expertise, such as a set of rules about syntax and structure

that are known to domain experts, be used to develop a set of post-processing rules,

which when used in combination with machine learning methods, improve the process

of document layout analysis?

• R8: Can neural topic models outperform traditional topic models such as LDA, on

commonly used topic evaluation metrics, such as coherence and topic diversity?

1.5 Overview of Chapters

Figure 1.1 gives a high-level overview of different chapters proposed in this thesis, along with

their respective contributions. The rest of this research is organized as follows:

• Chapter 2 outlines some of the important techniques and datasets related to the work

proposed in this thesis.

• Chapter 3 introduces a list of important elements commonly found in ETDs, and a

new dataset for training document layout analysis models on ETDs. It also describes

training for object detection, and an evaluation of related models.

• Chapter 4 proposes an augmentation-based training approach for object detection mod-

els. Experimental results showing how co-training on augmented data alongside orig-



inal data can improve the performance of object detection models on layout analysis,

are also presented.

• Chapter 5 introduces an AI-assisted framework for annotating object detection data

to improve the performance of layout analysis methods on minority classes. A new

dataset to support layout analysis of scanned ETDs, as well as to improve extraction

of low-frequency elements such as metadata and algorithms, is also presented.

• Chapter 6 proposes a parsing framework to generate structured representations of long

scholarly documents using the set of objects derived from object detection models.

• Chapter 7 introduces a framework for utilizing the elements extracted from document

layout parsing, for downstream tasks such as browsing and recommendation, by means

of topic modeling.
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Chapter 2

Review of Literature

2.1 Document Layout Analysis: Datasets

With the growing interest in using object detection based methods for document layout anal-

ysis, several datasets have been introduced. Many of these datasets focus on specific object

types. For instance, TableBank [23], ScanBank [19], and MFD [3] consist of tables, figures,

and equations, respectively. Several datasets that consist of a diverse set of objects have

also been introduced. HJDataset [34] consists of historical Japanese documents. PRImA [4]

consists of document images from magazines and research papers. PubLayNet [47] is based

on PDF articles from PubMed Central. The number of different objects, however, is limited

in these datasets. DocBank [24] is a large dataset that consists of a diverse set of objects

from research papers. But given the differences between research papers and long documents

such as ETDs, models trained on DocBank do not generalize well to ETDs.

2.2 Document Layout Analysis: Annotation Methods

Due to the intensive nature of dataset annotation in terms of time and cost, researchers have

proposed several techniques to annotate training datasets for object detection models. For

PDF documents with an accompanying MS-Word, XML, or LaTeX file, automatic extraction

based on tags is possible [23, 24]. However, in the case of scanned documents, existing rule-
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based approaches do not yield high-quality results. In such cases, techniques have been

explored that can help annotators, or guide them in annotating samples about which the

model is most uncertain [48].

2.3 Document Layout Analysis: Techniques

Early works in the domain of document layout understanding used rule-based approaches

[14, 22]. Other approaches, e.g., GROBID [26] and CERMINE [38], designed for parsing

scientific documents, primarily focused on short documents such as research papers, and

use an ensemble of sequence labeling methods for document parsing. With the advent of

deep-learning based object detection methods such as Fast-RCNN [12], Faster-RCNN [32],

and YOLO [30, 40], document layout analysis based on object detection has been proposed.

LayoutParser [35] uses object detection models that have been pre-trained on different ob-

ject detection datasets to support layout understanding. However, since it primarily uses

research-paper based datasets, it doesn’t perform well on ETDs. Moreover, the number

of object types it supports is very limited. More recently, layout-based language models

[17, 45, 46] have been proposed. This line of work uses a multimodal architecture, i.e., a

combination of visual and textual features, to pre-train the model on a large corpus of un-

labeled data consisting of document images and their corresponding text. Although these

models can then be fine-tuned on other downstream tasks such as object detection, they still

require domain-specific annotated data for fine-tuning. Recently, to make the documents

more accessible, services such as SciA11y [41] have been developed. However, their scope is

limited to research papers, rather than long documents such as books and ETDs.



2.4 Analysis of ETDs

With the growing number of ETDs that are publicly available on the web, techniques aimed

at analyzing ETDs have also gained interest in the research community. [39] proposes a

framework for automatic crawling of ETDs from public repositories, as well as the resultant

corpus of ETDs. An important line of work in the analysis of ETDs aims to extract elements,

such as metadata [8, 9], URLs [33], etc. [29] proposes an XML schema for ETDs in a digital

library.

2.5 Topic Modeling

Topic modeling has been widely studied in the domain of text mining to discover latent topics.

One of the earliest methods to discover topics in text documents was probabilistic Latent

Semantic Indexing (pLSI) [16]. However, since pLSI was based on the likelihood principle

and did not have a generative process, it cannot assign probabilities to new documents. This

was alleviated by Latent Dirichlet Allocation (LDA) [6], which models each document as a

mixture over topics, and topics as a mixture over words.

With advances in the field of deep learning, neural topic models have gained increasing

interest. Neural Variational Document Model (NVDM) [27] is a neural topic model that uses

an unsupervised generative model based on Variational Autoencoders (VAE) [21]. Several

other topic models that use a VAE-based architecture have been proposed [10, 28, 36].

More recently, pre-trained language models like BERT [20] and RoBERTa [25] have shown

significant performance improvements in many NLP-related tasks due to their ability to learn

contextualized representations of text. Consequently, several topic models that incorporate

the representations from pre-trained language models have been proposed. BERTopic [13]



uses a clustering-based approach to first cluster documents based on their language model

extracted representations, and then extracts the most representative words, i.e., topics, for

each cluster using a TF-IDF based approach. In this process, however, the topics are not

learnt, and are rather extracted using a post-processing mechanism. Contextualized Topic

Model (CTM) [5] proposed an end-to-end learnable architecture that uses language model

derived representations from Sentence-BERT [31] along with bag-of-words embeddings, in a

VAE-based architecture similar to ProdLDA [36].



Chapter 3

Parsing Long PDF Documents Using

Object Detection

3.1 Chapter Overview

In this chapter, we propose a set of elements in an ETD that are important for downstream

tasks like searching, browsing, question-answering, etc. We also introduce ETD-OD, a new

object detection dataset that contains over 25K page images originating from 200 ETDs,

consisting of elements that can be important sources of information in an ETD. Finally, we

investigate the performance of various state-of-the-art object detection models for document

layout understanding on ETDs using the proposed dataset.

3.2 ETD Elements

Historically, ETDs do not conform to a universally accepted format, since different colleges

and universities have their own specific standards and requirements for ETDs. In this section

we discuss the elements that are typically found in ETDs and would be important to extract

for further analysis and downstream tasks. This list was curated after extensive discussions

with digital librarians and researchers. We broadly categorize the different elements of ETDs
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into the following two-level taxonomy, i.e., set of broad and narrower classes.

3.2.1 Metadata

The metadata consists of elements that contain unique identifiable information about an

ETD, including information found on the front page. Key metadata elements are:

• Title: The main title of the document.

• Author: Name of the document author.

• Date: Date (or month/year) when the document was published.

• University: University/institution of the author.

• Committee: Committee that approved the document, e.g., the student’s graduate com-

mittee.

• Degree: Degree (e.g., Master of Science, Doctor of Philosophy) being earned.

3.2.2 Abstract

The abstract is an important element of an ETD, as it contains a summary of the work,

typically about a page long. Its elements include:

• Abstract Heading: Since many ETDs contain multiple abstracts, such as a technical

abstract and general audience abstract, or an abstract in English as well as the original

language, extracting the abstract heading makes it easier to segment, and could be helpful

in categorizing the abstract by audience type.

• Abstract Text: The actual text of the abstract.



3.2.3 List of Contents

The list of contents (also referred to as table of contents) of an ETD determines where

different components are located based on their page numbers. This helps with accurately

mapping the chapters and sections, as well as figures and tables, since they are generally

included in the list of contents. This subcategory includes the following elements:

• List of Contents Heading: This helps identify the specific type of list (e.g., list of

chapters/sections, list of figures, list of tables).

• List of Contents Text: This is the actual list of entries for this type of content.

3.2.4 Main Content

Chapters are one of the most important components of an ETD, as they contain detailed

information about the research described in the document. This subcategory consists of

elements that can typically be found in the chapters of an ETD.

• Chapter Title: The title of the chapter.

• Section: Quite often, chapters themselves can be long. It may be desirable to have

further delimiters such as sectional headers. Hence, we include the section names (along

with other identifiers such as numbers) which can be used for further splitting of the

document.

• Paragraph: The main textual content of the ETD.

• Figure: This includes figures, charts, and other visual illustrations included in the doc-

ument.

• Figure Caption: The text caption that describes the figure.

• Table: The table element category.

• Table Caption: The text caption that describes the table.



• Equation: Mathematical equation.

• Equation Number: Quite often, equations are numbered, which can be helpful in

linking them to the list of equations that may be included in the document.

• Algorithm: Algorithms, such as pseudo-code.

• Footnote: We separate footnotes from regular paragraphs, as they typically provide

auxiliary information which might be undesirable in many downstream tasks, such as

summary generation.

• Page Number: Page numbers, which could be helpful in cross-referencing pages and

the objects contained therein to the list of contents.

3.2.5 Bibliography

We also include bibliographic elements in the list of objects. They are described below:

• Reference Heading: The header that indicates start of the references list.

• Reference Text: The actual list of references cited in the document.

In our dataset, we regard appendices as chapters, since they contain many elements that are

found in the main chapters. They can however, be easily differentiated from main chapters

based on the title.

3.3 Dataset

In this section we introduce ETD-OD, an object detection dataset for layout analysis on

scholarly long documents such as ETDs.



3.3.1 Dataset Source

The ETD-OD dataset consists of 25K page images from 200 theses and dissertations. These

documents were downloaded from publicly accessible institutional repositories, and were

uniformly sampled with regards to degree, domain, and institution. Since object detection

requires images as the input data, the documents were split into page images using the

pdf2image1 Python library. These images were then used for annotation.

3.3.2 Annotation

We use Roboflow2 for annotating the page images in our dataset. Each annotation was done

by one of the 6 undergraduate students, each of whom was a computer science student from

junior year or above. Each data sample was further validated for correctness by two graduate

students.

3.3.3 Dataset Statistics

Table 3.1 shows the detailed statistics for different object categories in our dataset. The

dataset consists of ∼25K page images and ∼100K bounding boxes spanning across different

object categories. Owing to the variation in the frequency of occurrence of various object

categories in documents, some categories have many more samples as compared to others.

Elements such as paragraphs can be found on most pages, and hence, it is the dominant

category in our dataset. 80% of the images and their corresponding objects were used for

training, while the remaining 20% were used as the validation set.

1https://pypi.org/project/pdf2image/
2https://roboflow.com/

https://pypi.org/project/pdf2image/
https://roboflow.com/


Category # Instances
Title 439
Author 404
Date 338
University 309
Committee 282
Degree 279
Abstract Heading 169
Abstract Text 183
List of Contents Heading 512
List of Contents Text 1059
Chapter Title 2211
Section 9337
Paragraph 30359
Figure 6359
Figure Caption 5722
Table 2654
Table Caption 2213
Equation 5092
Equation Number 3051
Algorithm 96
Footnote 5722
Page Number 24543
Reference Heading 313
Reference Text 2088
Total Objects 99859
Total Images 25073

Table 3.1: Distribution of different object categories in our dataset. Note: Some of the doc-
uments were accompanied with front matter (metadata) pages that are sometimes generated
by the digital libraries. We include annotations for such documents as well, and hence, the
number of metadata elements does not exactly match the number of documents.



3.4 Proposed Framework

We now introduce the proposed framework for extracting important elements from an ETD

by means of object detection. The architecture of our framework is illustrated in Figure 5.3.

The different modules shown can broadly be divided into the following three categories.

3.4.1 Data and Preprocessing

Since our framework is primarily built for parsing long scholarly documents, it takes the

PDF version of the document as input. The input file is converted to individual page images

(.jpg format) using Python-based PDF libraries such as pdf2image. Next, the page images

are individually fed to the Element Extraction module for further processing.

3.4.2 Element Extraction using Object Detection

This module forms the backbone of our system. It takes the individual page images as input,

and uses an object detection model such as Faster-RCNN or YOLO for object detection.

These models are first trained on the ETD-OD dataset. The specific details about training

object detection models are included in later sections of this chapter. While using the object

detection models as a part of this module, only inference is performed, and no updates are

made to the model parameters. The output of object detection will be a list of elements,

where each element contains information about the bounding boxes such as the coordinates,

along with the category labels. This process is repeated for all of the pages in the document,

and finally, a list of pages accompanied by their respective elements is populated.

In some instances, the object detected by the model is classified as one belonging to a

different, yet similar category. In such cases, we use certain post-processing rules to correct



Figure 3.1: Architecture of the proposed object detection based parsing framework.



the predictions. For example, abstract heading being mis-classified as chapter heading is one

of the common errors, since both of these elements are often found in bigger font size at the

beginning of a page. This can, however, be corrected by enforcing a constraint such as: a

chapter heading in the first 10 pages with matching keyword “abstract” will be the abstract

heading. We use a set of such rules for different object types to correct mis-classifications.

This component is discussed in detail in Chapter 6.

3.4.3 Post-Processing Extracted Objects

After extracting all of the elements for all of the pages in the document, we regard the

objects as broadly belonging to two types. The first type includes image-based objects

such as figures, tables, algorithms, and equations, that need to be stored on the file system

as an image. We regard tables as image-based objects even though they might contain text,

since further extraction of information in structured format from tables is beyond the scope

of this work. The second type of object includes text-based elements such as paragraphs,

titles, etc., which need further processing to be converted to plain text. We regard all object

categories excluding the image-based ones as textual elements.

For converting text-based objects to plain text, we use off-the-shelf tools and libraries. Some

PDF documents are born-digital, where the text can be easily extracted using Python li-

braries such as pymupdf3 based on page ID and bounding box coordinates. For scanned

documents we use optical character recognition (OCR) tools such as pytesseract4.

For image-based elements, we record the path of the image that is cropped based on the

coordinates. Figures and tables are mapped to their respective captions based on proximity.

For any figure/table element, the caption object closest to them based on Euclidean distance
3https://pymupdf.readthedocs.io/en/latest/
4https://pypi.org/project/pytesseract/

https://pymupdf.readthedocs.io/en/latest/
https://pypi.org/project/pytesseract/


w.r.t. bounding box coordinates is assumed to be the caption. A similar method is followed to

map equations with their equation numbers, with an added constraint that the y-coordinate

of the center of the equation number should fall between min and max y-coordinates of the

equation object.

3.5 Object Detection Training

We use the ETD-OD dataset introduced in this chapter for training object detection models

for our framework. The models currently supported are:

• Faster-RCNN [32]: Faster-RCNN is an object detection model that has two stages. A

region proposal network generates regions of interest, which are fed to another network

for final detection. We use the version of Faster-RCNN that uses ResNeXt-101 [44] as

the backbone model.

• Faster-RCNN pre-trained on DocBank [24]: Faster-RCNN (with ResNeXt-101 back-

bone) is pre-trained on DocBank, and then fine-tuned on ETD-OD. Although DocBank

does not include all of the elements found in ETDs, we hypothesize that the scholarly

nature of documents used in pre-training should help improve the performance over the

vanilla version of the model.

• YOLOv5 [18]: YOLO is a family of single stage object detection models that perform

the processes of localization and detection using a single end-to-end network. This im-

proves the speed without any significant drop in performance. These models have shown

impressive performance on various datasets [42].

• YOLOv7 [40]: This is the most recent version of YOLO, which has been shown to

outperform many object detection models.

Both of the Faster-RCNN models were trained on our dataset for 60K iterations with an



inference score threshold of 0.7. The models were based on the implementation included

in the open-source detectron2 [43] framework. For the DocBank-pretrained version of the

model, we used the original set of weights and configurations open-sourced by the authors.

Both of the versions of YOLO were based on the open-source implementations, and were

trained for 150 epochs.

3.6 Experimental Results

In this section, we discuss the results obtained in the experimental analysis of our work.

3.6.1 Evaluation Metrics

For the quantitative evaluation of object detection models, the commonly used metrics are

average precision (AP) and mean average precision (mAP). AP is defined as the area under

the precision-recall curve for a specific class. mAP is the average of AP values for all object

classes. Both of these metrics have different versions based on the overlap threshold (also

referred to as Intersection over Union or IoU) used for comparing the predicted object

against ground truth. For example, in mAP@0.5, all of the objects with an intersection

of 50% or more with the ground truth will be regarded as correct predictions. Another

commonly used version of mAP is mAP@0.5-0.95, which is the average mAP over different

thresholds, from 0.5 to 0.95 with step 0.05.



Model mAP@0.5 mAP@0.5-0.95
Faster-RCNN 39.1 19.6
Faster-RCNN* 76.2 44.0
YOLOv5 83.4 52.1
YOLOv7 85.3 52.7

Table 3.2: mAP comparison for object detection models on ETD-OD. Faster-RCNN* rep-
resents the model pre-trained on DocBank and fine-tuned on ETD-OD. Underlined values
indicate best performing models.

3.6.2 Analysis of Various Object Detection Models Trained on

ETD-OD

Table 3.2 shows performance of different object detection models on the validation set of our

dataset. The following observations can be made from the mAP values shown.

• Pre-training on scholarly documents improves model performance: The basic

version of Faster-RCNN without any pre-training on scholarly documents has the lowest

performance among all the models. The same model, after pre-training on DocBank, and

then fine-tuned on the ETD dataset, gives much better performance. Since DocBank

also consists of scholarly documents, albeit of different type, the pre-training process

exposes the model to a diverse dataset, which eventually results in better generalization

and predictive performance.

• YOLO outperforms Faster-RCNN on ETD dataset: YOLO models belong to the

class of single stage detectors, which are designed with an emphasis on speed. YOLO

typically performs worse than Faster-RCNN in scenarios where the objects are smaller

or multiple objects are close to each other. However, in the case of documents, most

objects are typically of large size and have minimal overlap with each other due to white

spaces and line breaks around objects (such as between a header and paragraph). Hence,

it outperforms Faster-RCNN on the ETD dataset.



3.6.3 Analysis of Detection Performance on Different Object Cat-

egories

Category AP@0.5 Category AP@0.5
Title 92.5 Paragraph 97.4
Author 89.5 Figure 98.4
Date 68.3 Fig. Caption 95.4
University 91.1 Table 94.7
Committee 96.5 Tab. Caption 89.8
Degree 68.3 Equation 72.6
Abs. Heading 94.2 Eqn. Number 55.0
Abs. Text 86.7 Algorithm 66.6
LOC Heading 75.5 Footnote 98.9
LOC Text 99.3 Page Number 51.3
Chapter Title 88.8 Ref. Heading 80.7
Section 90.9 Ref. Text 99.3

Table 3.3: AP@0.5 values for different object categories for YOLOv7 (Abs. = Abstract,
LOC = List of Contents).

In Table 3.3, we show the performance of the best performing model (YOLOv7) on various

object categories in our dataset. The lower performance of certain categories can generally

be attributed to two reasons:

• Limited Number of Training Samples: Elements such as degree, date, and algorithm

have very few instances in our dataset. As such, the performance on these classes is lower

than others.

• Smaller Object Sizes: Elements such as page number and equation number tend to

be of smaller size as compared to other elements. Since object detection models tend to

struggle with localization of smaller objects, performance of such classes is impacted.

3.6.4 Comparison against Other Layout Detection Datasets



Categories DocBank
only

ETD-OD
only

DocBank
ETD-OD

Abstract 2.29 0.0 67.42
Author 5.8 19.27 73.27
Caption 42.72 55.04 / 18.27 97.46 / 89.03
Date 0.0 0.0 76.28
Equation 8.13 62.28 76.19
Figure 72.44 78.21 95.01
Footer 69.38 85.03 97.64
List NA NA NA
Paragraph 5.01 80.64 94.34
Reference 2.94 75.43 97.92
Section 19.88 66.99 77.63
Table 33.25 49.04 89.7
Title 1.1 11.3 73.85

Table 3.4: AP@0.5 values for categories supported by DocBank using Faster-RCNN trained
on different datasets and evaluated on the validation set of ETD-OD. For Caption, we list
the Figure Caption / Table Caption values for models trained on ETD-OD.

(a) Original Image (b) Faster-RCNN* (DocBank,
ETD-OD)

(c) YOLOv7

Figure 3.2: Examples of outputs generated by the Faster-RCNN* and YOLOv7 models.



Chapter 4

Augmentation-Based Training for

Layout Analysis Models

4.1 Chapter Overview

In Chapter 3, we introduced a dataset that can be used to train object detection models

to extract scholarly elements from ETDs. While having high quality manually annotated

datasets is an ideal method to train supervised machine learning methods, the high costs of

manual annotation often restrict researchers from getting access to large datasets. Hence,

there is a need to develop methods that can exploit the limited amount of manually annotated

datasets to the highest capacity. One such method is data augmentation, which augments

the existing training data curated for object detection training, by applying one or more

augmentation steps to each training image, while utilizing the annotations of the original

image. In this chapter, we explain an augmentation-based training approach for training

object detection models. We used this approach to train layout analysis for ETDs, and

experimental results show that augmentation-based training yields better performing models.
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4.2 Image Augmentation

We start by introducing data augmentation for images. We are given a set of N images

I = {i1, ..., iN} and annotations {b1, ...,bN}, where bk denotes the set of bounding box

coordinates and the corresponding labels associated with image ik. We also consider a set of

image transformation functions F = {f1, .., fM} and number of augmentation steps m < M .

For each image ik, our image augmentation process first samples the m transformation

functions from F . Each of these transformations is iteratively applied on the image to

generate an augmented version of the image îk. While many different types of augmentations

have been proposed for images, for our setting we limit it to techniques that do not modify

the underlying size or orientation of the image, but rather modify the visual aspects of the

image. The derived image can thus use the annotation bk of the source image without any

modifications. This process can be repeated multiple times, each time with a different value

of m and the corresponding sample of augmentation steps, to generate multiple augmented

versions of an image.

4.3 Types of Image Transformations

The different types of image transformations that we use to generate augmented dataset are

discussed below. An example of a page along with each of its augmented versions is shown

in Fig. 4.1. While the example here shows the versions generated by applying each of the

image transformation individually, in practice, we apply a series of augmentation steps to

generate harder samples. The augmented images thus generated are more likely to match

real world distortions that can be found in scholarly documents.



4.3.1 Brightness and Contrast

This step supports modifying the brightness and contrast of the original image. Since schol-

arly documents often contain multiple figures and tables, each with a varied range of colors,

and can often be scanned, we hypothesize that models trained on images of varying bright-

ness and contrast can be helpful.

4.3.2 Erosion

Many academic documents, especially the scanned ones, often contain eroded text, i.e., text

with broken boundaries. Due to erosion, the elements lose their clarity. This transformation

can allow models to better adapt to such examples.

4.3.3 Dilation

Like erosion, often times scanned documents may contain dilated text resulting from the

process of scanning. Dilation happens an element expands, resulting in some objects being

merged. To perform well on such cases, training on dilated versions can be helpful.

4.3.4 Borders

Many documents, when scanned, can contain borders resulting from the edges of binding. To

allow object detection models to be able to identify such noise, training on border-augmented

images can be helpful.



4.3.5 Downscale

Downscaling reduces the number of pixels in an image, thus reducing the sharpness of each

object in the image.

4.3.6 Blur

Documents have a wide range of variance in terms of resolution. Training on blurred images

can allow models to become more robust to such variance.

4.3.7 Salt and Pepper Noise

Noisy patches such as those resembling small dots of white/black colors like salt/pepper

sprinkles are common in the case of scanned documents. This augmentation can be helpful

to deal with such samples.

4.3.8 Random Lines

Another type of noise that is common in scanned documents is jagged lines, which are a

result of the scanning process. To allow layout analysis on such documents, we include this

augmentation.

4.4 Results

In this section, we discuss the experimental results obtained in our evaluation. We focus

our evaluation on two aspects, as discussed below. For each setting below, we use the



ETD-OD dataset introduced in Chapter 3 as the original dataset. For each of the images

in the training set, we generate 2 augmented versions, by applying up to 3 augmentation

functions per augmented image. The number and type of augmentation functions is sampled

individually for each generated image.

4.4.1 Models

We use the following models for our experimental evaluation. Each setting uses YOLOv7

[40] as the object detection model, as this was the best performing object detection model

on ETD-OD, as discussed in Chapter 3.

• YOLOv7base: This is the version of YOLOv7 trained on the original object detection

dataset. This model serves as the baseline model that has been trained without using

any augmented data.

• YOLOv7aug: This is the version of YOLOv7 trained on the original object detection

dataset, along with the derived data consisting of 2 augmented versions per image.

Due to the inclusion of the augmented dataset in training, the training dataset size

becomes 3× the dataset used in YOLOv7base. This is the model being evaluated for

augmentation-based testing.

4.4.2 Layout Detection of Digital ETDs

In this experiment, we want to determine if co-training on augmented images derived from

digital ETDs along with original images can improve the performance of layout analysis

on digital ETDs. Hence, we use the test split of ETD-OD as the evaluation dataset. We

evaluate the performance each of the two models, i.e., YOLOv7base and YOLOv7aug. These

results are shown in Table 4.1.



Model mAP@0.5 mAP@0.5-0.95
YOLOv7base 85.3 52.7
YOLOv7aug 85.7 53.6

Table 4.1: mAP scores of two different versions of YOLOv7 on test set consisting of digital
ETDs.

4.4.3 Layout Detection of Scanned ETDs

In this experiment, we evaluate if the augmentation-based training can be helpful in the

layout analysis of scanned ETDs. Hence, we use the test split of the scanned images from

ETD-ODv2 (introduced in Chapter 5) as the evaluation dataset. The result for each of the

two models is shown in Table 4.2.

Model mAP@0.5 mAP@0.5-0.95
YOLOv7base 44.9 25.2
YOLOv7aug 57.6 34.3

Table 4.2: mAP scores of two different versions of YOLOv7 on test set consisting of scanned
ETDs.

4.4.4 Analysis

Based on the results shown in Tables 4.1 and 4.2, it can be observed that YOLOv7aug, i.e.,

the model trained on augmented dataset alongside original dataset, outperforms the baseline

model in both of the settings. The performance improvement on digital ETDs is marginal,

which can be attributed to the fact that the validation set only consists of clean page images

with limited distortions. Thus, the improved prediction capability of the model does not

get tested in this setting. However, there is a significant performance improvement when

tested on page images from scanned documents. Since scanned documents are more likely to

contain distortions, obtaining good predictive performance requires the model to be robust



to such distortions. The model trained on augmented images is more likely to be robust

to such distortions, which can be seen from the better performance of YOLOv7aug over the

baseline model.



(a) Source Image. (b) Brightness/Contrast. (c) Erosion.

(d) Dilation. (e) Borders. (f) Downscale.

(g) Blur. (h) Salt and pepper. (i) Lines.

Figure 4.1: An example of a page with its augmented versions.



Chapter 5

AI-Aided Annotation for Developing

Layout Analysis Datasets

5.1 Chapter Overview

An important aspect of object detection-based methods is that they often require a huge

amount of labeled training data. For digital documents, especially those written in LaTeX,

it is often possible to obtain annotations using rule-based automatic annotation methods

[24]. However, in the case of scanned documents, as well as digital documents without

accompanying LaTeX source code, annotating data is a cumbersome process that requires

a great amount of manual effort. In the case of ETDs, many documents present in dig-

ital libraries, especially the older ones, tend to be scanned documents that were written

using legacy text editing software or with a typewriter. These documents were then mi-

crofilmed and/or scanned and converted to PDF. Consequently, these documents contain a

large amount of noise that was introduced during the PDF conversion process, as shown in

Figure 5.1. Furthermore, given that these documents were prepared using legacy methods,

they differ significantly from newer documents, such as digital ETDs, in terms of layout and

structure. Additionally, some of the elements, such as metadata elements like ETD title and

author name, can only be found on a few pages, while others, such as a paragraph, can be

found on many pages in a document. As such, the distribution of different object categories
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in the training data varies. This also affects the performance of object detection models in

classes with a limited number of training instances.

(a) Handwritten elements. (b) Noisy patches.

Figure 5.1: Examples of pages from scanned documents.

In this chapter, we propose an AI-aided annotation framework to minimize the amount of

resources such as annotation time associated with developing training datasets for layout

analysis. Our proposed framework utilizes the predictive capabilities of models trained on

existing datasets to assist human annotators. As illustrated in Figure 5.2, although the

annotations generated by the model might not all be correct, many of them are correct.

Having humans only enter annotation corrections can reduce the number of instances that

need to be manually labeled. This significantly speeds up the annotation process, without

compromising the quality of the generated dataset. It also helps to address the problem of



class imbalance in object detection datasets, by guiding annotators to selectively label im-

ages, e.g., those that are more likely to contain elements from a predefined set. Experimental

results show that our proposed annotation scheme significantly reduces the annotation time

and class imbalance, thus resulting in models with improved performance across the set of

object classes. We also introduce ETD-ODv2, a new dataset for object detection-based lay-

out analysis of long documents such as theses and dissertations. ETD-ODv2 supplements

the page images included in ETD-OD, adding 20K page images originating from scanned

theses and dissertations. It also adds annotations for page images that are likely to con-

(a) Model generated annotations. (b) Corrected annotations.

Figure 5.2: An illustration showing a page from a scanned document, the annotations gen-
erated by an object detection model trained on a small dataset, and the final annotations
after correction by a human annotator.



Figure 5.3: Architecture of the proposed AI-aided annotation framework.

tain low-frequency elements, such as document title and algorithm, since they can only be

found on selected pages of a document, or in documents from specific domains (e.g., equa-

tions in a physics work). These pages were sourced from a large corpus consisting of both

scanned and digital documents, making them helpful for mitigating the class imbalance in

existing datasets as well. ETD-ODv2 thus addresses the limitations of existing datasets for

ETD layout analysis, whose scope is limited to digital documents only, and suffers from a

class imbalance problem. Our experimental results show that models trained on our newly

annotated dataset perform much better than those trained on other datasets.

5.2 Proposed AI-aided Annotation Scheme

Due to the resource-intensive nature of the dataset annotation process, labeled data for

training supervised machine learning models are always scarce. However, unlabeled data are

generally available in abundance. This is also the case with document layout analysis, where

getting high-quality annotations for documents and their respective pages is not easy. How-

ever, given the numerous documents that exist on the Internet and in digital libraries, many



unlabeled scholarly documents are publicly available. Although labeling document page im-

ages is a cumbersome task, we hypothesize that models trained on existing datasets can be

used to assist human annotators in the labeling process, thus reducing the time required to

annotate training datasets. These models can be used to generate weak labels for the huge

corpus of unlabeled ETDs, which can then be filtered, validated, and corrected by human

annotators. Based on this assumption, in this section, we propose an AI-aided annotation

framework for developing datasets to train supervised object detection models. Figure 5.3

gives an overview of our proposed framework. The key components of this framework are

discussed in detail below.

5.2.1 Dataset Sampling

We use a large corpus of unlabeled ETDs, sourced from multiple open access digital libraries.

We first sample a set of documents from this unlabeled corpus that can be used for AI-aided

annotation. Each of these documents is then split into page images, since object detection

models require images as input.

5.2.2 Weak Labels Using Pre-Trained Model

Once we have a set of documents as well as their respective page images, they are sent to an

object detection model such as YOLO [40] or Faster-RCNN [32] that has been pre-trained

on an existing labeled dataset, such as ETD-OD [1]. The labels thus inferred for each image

serve as weak annotations for further processing and manual verification/annotation.



5.2.3 Optional Filtering for Specific Object Classes

In some cases, such as in the case of academic documents like theses and dissertations,

labeling the entire set of pages found in the sampled documents could result in a highly

unbalanced dataset. In such cases, it might be desirable to use weak labels to identify

images containing a pre-defined set of object categories. We refer to these object categories

as objects of interest. These categories include minority classes, such as those containing

very few instances in the labeled dataset, or those that have lower performance as compared

to other categories. This could enable researchers to produce datasets with balanced class

distributions.

5.2.4 Manual Verification and Correction

The filtered set of pages, along with their predicted bounding boxes and their respective

labels, is then verified by human annotators for correctness. For page images with correctly

predicted objects, no changes are made and the respective page is added to the verified

dataset. For page images with incorrect predictions, whether in terms of missing or incorrect

labels, the correct bounding boxes are drawn by human annotators before being added to

the verified dataset.

The new dataset can then be used to fine-tune existing pre-trained models or in combination

with existing datasets for model training.

5.3 ETD-ODv2 Dataset

In this section, we introduce ETD-ODv2, a new dataset for layout analysis of electronic

theses and dissertations. Although existing datasets like ETD-OD [1] can be helpful in



Category Name Description #Digital #Scanned #AI-Aided #Total
Instances Instances Instances Instances

Title Title of the document 439 (0.4%) 253 (0.4%) 2186 (1.6%) 2878 (1.0%)
Author Name of the document author 404 (0.4%) 249 (0.4%) 2548 (1.9%) 3201 (1.1%)
Date Date of publication, or of final research defense 324 (0.3%) 224 (0.4%) 2415 (1.8%) 2963 (1.0%)
University University/institution of the author 340 (0.3%) 203 (0.3%) 1873 (1.4%) 2416 (0.8%)
Committee Committee that approved the document 305 (0.3%) 83 (0.1%) 1472 (1.1%) 1860 (0.6%)
Degree Degree (e.g., Master of Science) being earned. 281 (0.3%) 202 (0.3%) 1834 (1.3%) 2317 (0.8%)
Abstract Heading A header that indicates the start of abstract text 169 (0.2%) 113 (0.2%) 807 (0.6%) 1089 (0.4%)
Abstract Text The actual text of the abstract 183 (0.2%) 73 (0.1%) 952 (0.7%) 1208 (0.4%)
List of Contents Heading A header that identifies the content of a list 512 (0.5%) 300 (0.5%) 3151 (2.3%) 3963 (1.3%)
List of Contents Text The actual list of entries for the type of content 1059 (1.1%) 460 (0.7%) 3172 (2.3%) 4691 (1.6%)
Chapter Title The title of the chapter 2199 (2.2%) 1926 (3.1%) 1263 (0.9%) 5388 (1.8%)
Section The header of a section which splits a document 9337 (9.4%) 2946 (4.7%) 5196 (3.8%) 17479 (5.8%)
Paragraph The main textual content of the document 30359 (30.4%) 17962 (28.5%) 34601 (25.2%) 82922 (27.6%)
Figure A figure, chart, or other visual illustration 6359 (6.4%) 2977 (4.7%) 2148 (1.6%) 11484 (3.8%)
Figure Caption The text caption that describes a figure 5722 (5.7%) 2370 (3.8%) 1564 (1.1%) 9656 (3.2%)
Table The table element category 3145 (3.1%) 2192 (3.5%) 656 (0.5%) 5993 (2.0%)
Table Caption The text caption that describes a table 2225 (2.2%) 1872 (3.0%) 399 (0.3%) 4496 (1.5%)
Equation A mathematical equation/formula 5092 (5.1%) 5579 (8.8%) 27266 (19.8%) 37937 (12.6%)
Equation Number Used to reference an equation with a number 1834 (1.8%) 3727 (5.9%) 20943 (15.2%) 26504 (8.8%)
Algorithm An algorithm description, e.g., as pseudo-code 96 (0.1%) 224 (0.4%) 787 (0.6%) 1107 (0.4%)
Footnote Auxiliary information at the end of content 2029 (2.0%) 2340 (3.7%) 1045 (0.8%) 5414 (1.8%)
Page Number A number of a specific page in a document 24543 (24.6%) 15800 (25.0%) 17454 (12.7%) 57797 (19.2%)
Reference Heading A header that indicates the start of a reference list 271 (0.3%) 189 (0.3%) 1830 (1.3%) 2290 (0.8%)
Reference Text The actual list of reference cited in the document 2632 (2.6%) 864 (1.4%) 1839 (1.3%) 5335 (1.8%)
Total Objects 99859 63128 137401 300388
Total Images 25073 16766 20204 62043

Table 5.1: ETD-ODv2 dataset statistics.

layout extraction from digital documents, they suffer from a class imbalance problem and

do not contain scanned documents.

5.3.1 Scanned Documents

There are several attributes related to scanned documents that are not found in digital

documents. These include the following.

• Noisy patches: A common observation found in scanned documents is that a large

number of pages contain noisy patches that result from the process of converting such

documents into an electronically readable PDF file.

• Low resolution: Given that these documents are essentially images of hard-copy versions

of the original document, they tend to have relatively low resolution.



• Dilated or eroded text: Another common observation regarding many scanned docu-

ments is that the text is eroded (i.e., has a thinner font than the original document) or

dilated. This can also be attributed to the PDF conversion process.

• Handwritten elements: Some of the pages of scanned documents contain elements –

such as tables, figures, and equations – that were written or drawn by hand and were not

typed or created using software.

Due to the presence of such attributes, object detection models trained on the digital docu-

ments dataset generally do not perform well on scanned documents. Hence, our new dataset

includes manually annotated page images from scanned documents, to support layout anal-

ysis on scanned documents.

5.3.2 Page Images with Minority Elements

While it is desirable to have images of pages from scanned documents, this does not prevent

the dataset from being subject to a class imbalance problem. This is because some elements

– such as document title and author name – typically only appear on a small set of pages in

the document, such as the front page. Therefore, a dataset constructed by labeling all pages

appearing in a document will always be prone to the class imbalance problem. Moreover,

some element classes such as algorithm might only appear in documents in certain domains,

such as computer science. Hence, a set of documents uniformly sampled from several different

domains will have few pages with such instances. To alleviate this problem, we use the

proposed AI-aided annotation method to identify/filter and annotate pages that are more

likely to contain such minority elements. These page images were sourced from both digital

and scanned documents. The elements that we consider to be minority elements are listed

below.



• Elements found on a limited number of pages: Title, Author, Date, University,

Committee, Degree, Abstract Text, List of Contents Heading.

• Elements found in documents from select disciplines: Equation, Equation Num-

ber, Algorithm, Reference Heading.

5.3.3 Dataset Source and Object Classes

To ensure compatibility with existing datasets, we use the object categories defined in ETD-

OD for annotation. The documents in both subsets of our data set (i.e., the scanned and

AI-aided) were sourced from a uniformly sampled set of theses and dissertations from open

access institutional repositories of U.S. origin [39].

5.3.4 Dataset Statistics

Table 5.1 shows the detailed statistics of different object categories in our dataset.

Scanned Documents

The subset of scanned documents in our dataset consists of images and bounding box an-

notations of ∼16K pages, derived from 100 theses and dissertations. These documents were

annotated by a group of five undergraduate students [49]. To ensure the correctness, each

sample also went through another round of review by one of the authors of [2]. We use

Roboflow1 as the dataset annotation platform.

1https://roboflow.com/

https://roboflow.com/


Pages with low-frequency elements

Our dataset also consists of ∼20K page images from ∼1,200 documents that were annotated

using our proposed AI-aided annotation framework. The pages were then filtered based on

the labels listed above and reviewed and corrected as needed by a group of four annotators

[11].

5.4 Experiments

In this section, we report the experimental results obtained during our evaluation. Our

experiments focus on determining the improvements in terms of human resources, such as

annotation time, obtained using the AI-aided annotation strategy. We also analyze whether

the new dataset, consisting of scanned documents and pages with instances from lower-

frequency categories, can be helpful in improving the performance of object detection models.

5.4.1 Annotation Time

Experimental Setup

To construct our proposed AI-aided annotation framework, we used the bounding box widget

from the open source framework pylabel2, which was integrated with a pre-trained object

detection model. We trained a YOLOv7 model [40] on ETD-OD [1] and a small set of ∼2K

scanned documents. We only used a small number of samples from the scanned documents

dataset, as that was the only sample available at the time. The model obtained was then used

in our AI-aided framework to generate the proposed labels. We will refer to this model as

2https://pylabel.readthedocs.io/en/latest/

https://pylabel.readthedocs.io/en/latest/


YOLOv7_base in the remainder of the discussion. As noted in [1], YOLOv7 outperforms

other models in the object detection task, so we use it as the detection model for empirical

evaluation.

Evaluation Settings

To determine whether the proposed AI-aided annotation scheme reduces resource require-

ments, we compare the time required to label images under different settings.

• No Model Assistance: This is the classical labeling setting under which the annotators

are shown neither bounding boxes nor the respective labels for page images.

• AI-Aided-v1: Under this setting, for each image, the annotators were shown the bound-

ing boxes generated by the YOLOv7_base model.

• AI-Aided-v2: For this setting, we fine-tuned the YOLOv7_base model on a set of

10K page images labeled using our AI-aided annotation scheme. This was done to eval-

uate whether the assistance of a model trained on an additional new dataset affects the

annotation time. We then used this model to generate bounding boxes for each image

shown to the annotators.

In the two AI-aided settings, annotators were asked first to review the model-generated

annotations. All correct annotations were left unchanged, and only missing, incorrect, or

extra-bounding boxes were asked to be modified. For each of the three settings, each of the

four annotators annotated ∼500 pages, and the time spent on annotation was recorded.

Results

In Figure 5.4, we report the average time spent per page by each of the annotators under

different annotation settings. The following observations can be made:



• Model assistance significantly reduces annotation time: As we can observe from

the graph, the average time required to annotate a page without the assistance of a

model (i.e., without any proposed bounding boxes) is 2-3 times longer than for each of

the AI-aided settings. This is likely because even though the models used for assisting

annotators might have been trained on limited data and coverage (in terms of document

types and object classes), they still possess predictive power to help with many of the

elements found in pages, such as paragraphs and figures. Thus, we can conclude that the

assistance of models trained on existing data significantly helps in annotating more data

by reducing the time required for annotation.

• Model assistance increases with better trained models: Another observation that

can be made from Figure 5.4 is that as we obtain models with better predictive power, the

suggested labels of the model become more accurate, further reducing the time required

to annotate a page. The model used for the AI-Aided-v2 setting had been trained on

10K more samples than the one used in AI-Aided-v1 setting. The samples used were

also more balanced in terms of object classes. Therefore, it has better predictive power,
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Figure 5.4: Annotation time for each annotator under different annotation settings.



enabling it to be more helpful to human annotators.

5.4.2 Object Detection Performance

In this analysis, we present our findings on how the AI-aided annotated dataset helps improve

object detection performance. The specific details of this analysis are described below.

Object Detection Model

As stated above, we use YOLOv7 as the benchmark object detection model for this analysis.

Since the purpose of this analysis is to determine how training on different datasets impacts

model performance, the specific choice of object detection model is beyond the scope of this

analysis. Moreover, previous studies have shown that YOLOv7 is the state-of-the-art model

for object detection tasks [1, 40, 42].

Test Dataset

Since the AI-aided subset of our dataset was constructed with the objective of mitigating the

class imbalance problem, it consists of page images from documents of several types, such

as scanned and digital. Therefore, to analyze how training with the AI-aided dataset helps

object detection models on various types of documents, we construct a test dataset consisting

of page images sampled from ETD-OD [1], as well as the scanned and low-frequency element

pages from ETD-ODv2. This is done to ensure that the test set is representative of diversity

in terms of both document types and object types. The breakdown of images and objects in

the test dataset is shown in Table 5.2.



Source # Images # Objects
Digital 3760 14319
Scanned 9353 9294
AI-Aided 3031 20718
Total Test 9353 44331

Table 5.2: Distribution of the test dataset.

Baselines

We use the versions of the dataset listed below to evaluate object detection performance. All

versions used YOLOv7 as the object detection model. The number of images and objects in

each version is listed in Table 5.3.

• Digital: This version of the model was trained only on the digital document images from

ETD-OD. As such, the training dataset contained a small number of samples from the

minority classes due to the class imbalance in the scanned subset.

• Scanned: This version of the model was trained only on the scanned subset of the ETD-

ODv2 dataset. As in the previous setting, the training dataset used in this setting also

has the class imbalance problem.

• Digital + Scanned: Under this setting, the YOLOv7 model was trained on the com-

bined images of scanned and digital documents, that is, a merged set consisting of the

two dataset splits described above.

Version # Images # Objects
Digital 21313 85540
Scanned 14204 53834
Digital + Scanned 35517 139374
Digital + Scanned + AI-Aided 52690 256057

Table 5.3: Statistics of different versions of the data set used for training.



• Digital + Scanned + AI-Aided: This setting uses the Digital + Scanned split

described above, along with the AI-aided subset of ETD-ODv2. This setting represents a

model that has been trained on diverse types of document (i.e., digital and scanned) and

consists of a larger number of training instances from each object category.

AP@0.5 AP@0.5:0.95

Categories Digital Scanned Digital+ Digital+
Digital Scanned Digital+ Digital+

Scanned+ Scanned+Scanned AI-Aided Scanned AI-Aided
Title 0.861 0.538 0.888 0.924 0.688 0.340 0.672 0.732
Author 0.814 0.471 0.833 0.927 0.556 0.221 0.523 0.624
Date 0.676 0.393 0.731 0.852 0.454 0.124 0.398 0.545
University 0.730 0.312 0.788 0.874 0.539 0.156 0.529 0.628
Committee 0.822 0.327 0.856 0.926 0.622 0.167 0.620 0.692
Degree 0.524 0.060 0.551 0.732 0.385 0.024 0.380 0.532
Abstract Heading 0.897 0.320 0.929 0.948 0.636 0.127 0.628 0.672
Abstract Text 0.812 0.703 0.837 0.872 0.786 0.629 0.811 0.845
List of Contents Heading 0.880 0.782 0.884 0.915 0.655 0.293 0.555 0.690
List of Contents Text 0.939 0.926 0.955 0.966 0.875 0.790 0.889 0.896
Chapter Title 0.503 0.460 0.761 0.786 0.273 0.211 0.406 0.425
Section 0.861 0.706 0.882 0.890 0.495 0.306 0.509 0.541
Paragraph 0.944 0.925 0.964 0.969 0.805 0.728 0.825 0.841
Figure 0.855 0.854 0.917 0.965 0.674 0.609 0.754 0.797
Figure Caption 0.809 0.716 0.881 0.897 0.518 0.359 0.564 0.576
Table 0.864 0.824 0.919 0.941 0.668 0.602 0.748 0.761
Table Caption 0.763 0.590 0.891 0.903 0.424 0.317 0.519 0.524
Equation 0.857 0.825 0.875 0.920 0.652 0.521 0.635 0.719
Equation Number 0.832 0.594 0.890 0.916 0.565 0.122 0.486 0.657
Algorithm 0.368 0.231 0.463 0.665 0.327 0.173 0.406 0.527
Footnote 0.697 0.854 0.881 0.950 0.488 0.574 0.638 0.687
Page Number 0.519 0.346 0.630 0.670 0.206 0.098 0.216 0.261
Reference Heading 0.836 0.612 0.808 0.871 0.631 0.238 0.561 0.655
Reference Text 0.911 0.927 0.964 0.974 0.838 0.819 0.894 0.904
Combined (mAP) 0.774 0.596 0.832 0.886 0.573 0.356 0.590 0.655

Table 5.4: Object detection performance results.

Evaluation Metrics

We use the two commonly used object detection metrics to evaluate the results of different

models discussed above. Both metrics are based on the average precision (AP), which is



calculated based on the number of predicted objects that overlap with the ground-truth

object over a certain threshold in terms of the area. The two metrics are described in detail

below.

• AP@0.50 / mAP@0.50: For a given object category, AP@0.50 is the percentage of

predicted bounding boxes that overlap with the true bounding boxes by more than 50%

in terms of area. mAP@0.50 is the average of AP@0.50 for all object categories.

• AP@0.50:0.95 / mAP@0.50:0.95: This is calculated by first calculating the AP at

different thresholds, from 0.50 to 0.95, with a step of 0.05. All these AP values are

averaged to compute AP@0.50:0.95 for an object category. mAP@0.50:0.95 is the average

of AP@0.50:0.95 for all object categories.

Results

Table 5.4 shows the results obtained on the test dataset described above in each of the

training settings. Based on the results shown, the following observations can be made.

• Performance w.r.t. document type: The subset of images used to train the Scanned

model had the highest amount of noise and lowest quality (e.g., blurred) as compared to

the training dataset used for other models. This results in the lowest overall performance

of the model.

• Size of the training dataset: The Scanned model was trained on the smallest training

dataset. Consequently, it has the lowest performance among all four variants. The large

size of the training dataset used in Digital + Scanned + AI-Aided helps achieve the

best overall performance.

• Performance on minority classes: We also find that training on a dataset with a

better distribution in terms of object classes significantly improves performance. As can



be seen from the results shown, the performance of certain categories, such as Degree

and Algorithm, increased by ∼20%. This shows that model performance on certain low-

performing categories can be improved by training on a larger number of samples from

such categories.

• Weak labels can be helpful signals for targeted annotation: Another observation

that can be made from the performance improvements achieved on low-frequency cate-

gories is that weak labels generated from an existing model can serve as a good indicator

for more targeted annotation. Although using such labels cannot guarantee coverage,

they can still address performance issues to a great extent.

• Overall performance: Finally, we can also observe that performance improvements

are achieved in other categories that were not included in the filter set. This can be

attributed to the fact that while the AI-Aided data consisted of pages filtered based on

the occurrence of minority elements, these pages also contained other elements in addition

to those from the filter set. This helped the model to be trained on more samples from

other object categories as well, thus improving the performance across all object classes.



Chapter 6

Structured Representations of Long

Scholarly Documents

6.1 Chapter Overview

In Chapters 3, 4, and 5, we discussed how object detection can be used to detect and extract

important scholarly elements from long documents such as ETDs. However, the scope of

these chapters was limited to extracting elements from the document pages. In reality, a

long PDF document such as an ETD consists of many pages, each of which contributes

to the overall organization of the document, which can be represented as a hierarchical

structure. Converting the “unordered set” of objects extracted from layout parsing methods

to a structured format which can represent the organization of information in an ETD

can be very helpful to support downstream tasks such as document/figure search, chapter

summarization, etc. The structured versions can also be used to support accessibility needs

of those with disabilities, by means of accessibility tools such as on-screen readers. However,

generating structured versions of ETDs is a non-trivial task, and involves several challenges,

as discussed below:

• Identifying delimiters: Delimiters, such as chapter and section elements, are one of

the most important components of the information structure of an ETD. The inherently

long nature of ETDs makes correct identification of delimiters an important component
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in ETD parsing. They are useful in segmenting the document into multiple smaller

components, thus making it easier for the reader. They are also useful in downstream

tasks that rely on segmented units of a long document, such as chapter summarization.

• Linking objects: Many object types have relationships between each other, and

correct identification of such relationships can be useful in several downstream tasks.

For example, linking figures and/or tables to the respective captions can be useful

in figure/table search. As such, identifying such relationships is important during

information extraction from scholarly documents.

In this chapter, we address the task of converting the extracted set of elements to a structured

format, such as XML, so that the information in a document can be made useful for other

downstream tasks. We also present a system that can allow for easy navigation of a long

PDF document, using the information from the generated XML format.

6.2 XML Schema

Based on the structure of an ETD, in Schema 6.1, we present an XML schema that can be

used to capture the organization of content in an ETD in a structured format. The schema

is based on the following observations.

• The overall information in an ETD can broadly be encapsulated into three high-level

categories. front consists of elements that can give key identifiable information, as well

as an overall summary about the work. These include metadata elements, abstract,

and lists(s) of contents, figures, and tables.

• body consists of elements that can give in-depth information about the content of a

document. It contains a list of chapters, each of which further contains a list of sections.

The sections encapsulate detailed informational elements contained therein.



• back consists of information that often is not critical for the understanding of a docu-

ment. This includes a list of references and the appendices.

<etd>

<front>

<title>Document Title</title>

<author>Author Name</author>

<university>University</university>

<degree>Degree Type</degree>

<committee>Committee</committee>

<date>Date or Month/Year</date>

<abs_heading>Abstract</abs_heading>

<abs_text>In this..</abs_text>

<toc_heading>Table of..</toc_heading>

<toc_text>1. Intro ...</toc_text>

</front>

<body>

<chapter>

<title>Chapter-1..</title>

<page_no>1</page_no>

<sections>

<section>

<name>1.1..</name>

<paragraphs>

<para>In this...</para>

<para>Next, we...</para>

</paragraphs>

<figures>

<figure>

<path>fig_001.png</path>

<caption>Fig.1...</caption>

</figure>

</figures>

<tables>

<table>

<path>tab_001.png</path>

<caption>Table.1.. </caption>

</table>

</tables>



<equations>

<equation>

<path>eqn_001.png</path>

<eq_no>1</eq_no>

</equation>

</equations>

<algorithms>

<algorithm>

<path>alg_001.png</path>

</algorithm>

</algorithms>

<footnotes>

<footnote>...</footnote>

</footnotes>

</section>

</sections>

</chapter>

</body>

<back>

<ref_heading>Ref..</ref_heading>

<ref_text>..</ref_text>

</back>

</etd>

Schema 6.1: XML Schema for Representing ETDs in Structured Format.

6.3 XML Generation

As discussed earlier, two challenges hinder the process of converting a PDF and its respective

objects from each of the pages into the XML format shown above. We will address these

challenges by observing the errors found in a uniformly sampled set of documents, and then

formulating a set of rules derived based on domain expertise regarding document structure.



6.3.1 Identifying Delimiters

We discuss some of the commonly found errors in delimiters below. While the list is not

exhaustive and might not cover all possible errors, it is based on a user study of a sample

consisting of 25 ETDs by 2 undergraduate students from Virginia Tech’s course CS 4624

(Multimedia, Hypertext, and Information Access) in Spring 2023.

• Error: Last line of a paragraph on a new page being detected as a chapter heading.

Reason: Many chapter headings in ETDs appear as first line of a document, and are

only a few words (less than a line) long. The last line of a paragraph resembles such

chapter headings.

Proposed Rules:

– Chapter headings that do not start with a capital case letter are re-labeled as

paragraph.

– The last paragraph of the previous page should have its last character as an end

punctuation.

• Error: Chapter headings in headers and footers being regarded as start of new chap-

ters.

Reason: Many documents contain contain headers and footers on every page, which

contains the title of the current chapters. Due to similarities between such elements

and the actual chapter title, such as the presence of “chapter” keyword, the model

might regard them as chapter titles.

Proposed Rules: When identifying a new instance of a chapter element in the

parser, ensure that the title of the new chapter differs from the previous chapter.

Some other rules that are applied to chapter elements include:

• Presence in Table of Contents: For all the detected chapters, we check for their



existence in the table of contents. A list of all the entries from the table of contents

is extracted, and then each of the elements is checked against this set of entries. The

matching is done using fuzzy string matching, to make sure the chapter titles overlap

with at least one table of contents entry, with similarity above a certain threshold.

This threshold will be derived empirically. Additionally, since we also detect the page

number as one of the objects, we can match the page number in the table of contents

entry against the chapter title and its detected page number as a further validation

step.

• Location in the page: Chapter titles often appear on the top of the page. Based on

this observation, we can filter out all the chapter titles that occur in the first half of

the page based on the y-coordinate of the tentatively detected chapter titles.

While such rules may be helpful in fixing incorrect predictions, their scope is limited to false

positive predictions only. This means that the rules cannot help us identify the objects that

were not detected by the object detection method. Those objects can only be identified by

a better object detection model, and we leave that as future work.

6.3.2 Linking Figures and Tables with their Captions

For each of the elements types (e.g., figures and tables) that need to be linked with their

captions, we first identify the order of element and their caption. Some documents may

contain a caption below the figures, while others might contain captions above. The same

also applies to tables. Hence, for each document, we iterate through all the detected figures

and count the number of figures that have a caption above them, and the number of figures

that have a caption below. Based on the maximum of the two numbers, we determine the

order of figures and their captions. The same process is followed for tables to determine the



table-caption order.

Next, for each figure and table, based on the determined order, we find the nearest corre-

sponding caption element. A special case is figures that have captions on different pages. A

methodology to link such figures with their captions would be a direction for future work in

this domain.

6.3.3 Linking Equations and Equation Numbers

Equation elements are linked to the nearest equation number elements based on the y-

coordinate.

6.4 PDF to HTML Browser for Improved Accessibility

In addition to generating structured representations of the entire PDF using objects detected

from individual page images, wedevelop a working system that allows users to view ETDs

in an accessible format. The system allows users to upload the document of their preference

and then view it in web-based UI. This system is built as a Flask application, which first

generates the structured version of a document based on the XML format shown earlier, and

then displays the document in the browser. This system offers multiple use-cases, as listed

below.

6.4.1 User-friendly View of Long Documents

One of the well-known problems of ETDs is that they are inherently long documents, and

navigating them is hard. Some existing studies [41] have shown that allowing users to be



able to read long PDF documents in a web-based application is helpful and can improve

the readability of such documents. By allowing users to view a long ETD in a web-based

application, we expect increased usage and adoption of such documents by researchers.

6.4.2 Improved Accessibility for Those with Disabilities

A common limitation of PDF documents is their limited compatibility with accessibility

tools such as on-screen readers. This is crucial for users with special needs, such as those

with blindness, as such users often rely on accessibility tools for access to knowledge. In

recent years, tools such as PREP1 have been developed, to allow with tagging PDFs to make

them compatible with on-screen readers. However, based on our analysis, it was found that

automatic tagging feature of PREP does not work well in the case of ETDs, thus limiting

the usability of such documents by users with accessibility needs. On the other hand, HTML

based applications can be very well integrated with on-screen readers.

6.5 System Design

Figure 6.1 shows an overview of our PDF to HTML parsing system for ETDs. The system

allows users to view long PDF versions of ETDs in a user-friendly and accessible format in

a web-based interface. While currently the system requires users to upload a PDF file they

want to parse and view, in the future this will be merged with the integrated system for

ETDs, expected to be developed by the CS5604 class in Fall 2023. This will allow offline

processing, so that users can view one of the many ETDs in an institutional repository in

an accessible format. The different components of the UI are explained in detail below.

1https://prep.continualengine.com/

https://prep.continualengine.com/


Figure 6.1: An overview of the PDF to XML to HTML system.

6.5.1 Side Bar for Navigation

ETDs are inherently long documents consisting of multiple components such as chapters.

Each chapter often consists of multiple sub-components such as sections, wherein key infor-

mation such as text, figures, and tables exist. To allow users to navigate through a long

document, it is often desirable to have a high-level view of the document. While digital

documents, such as those written in LATEXcan support this via applications such as Acrobat

Viewer, many ETDs do not support this either because they were written using a legacy

tool, or are scanned documents. Hence, to help with such documents, our system allows

navigation using a collapsible side bar. The side bar shows a list of chapters that were

extracted from the document. Each chapter is a nested list that consists of the sections in

the corresponding chapter. Some sections also contain elements such as figures and tables,

which often contain important findings of a document. Hence, a third level of nesting shows



a list of tables and figures (based on the captions) for the corresponding section. Each of the

entries in the sidebar have hyperlinks to the corresponding element in the main document.

6.5.2 PDF View

To allow users to keep track of the original documents, as well to support cross referencing,

the original PDF document is shown in the right side bar. This sidebar can be extended

in width for those who might want to have a detailed look at the PDF document. It also

serves as a testing tool for the document parser, so that researchers can evaluate the quality

of extracted components by directly cross-referencing them with the original document.

6.5.3 Document View

This is the main component of our document viewer, that shows the content of the document.

The top part of this space shows the document metadata such as title, author name, and

university. It is followed by the main content of the document. Figures, tables, equations,

and algorithms are displayed as images. Each of the contents shown in this section can be

cross-referenced in the original PDF being displayed in the right side bar using a click. This

functionality allows users to cross-reference elements such as mathematical text, which are

likely to become erroneous or confusing in the PDF-to-text extraction process.



Chapter 7

Topic Modeling based System for

Analyzing and Browsing ETDs

7.1 Chapter Overview

As discussed earlier, many downstream tasks rely on NLP algorithms, which require specific

elements of a long document, such as title, abstract, chapter text, etc. One such line of work

that is of value in the analysis of ETDs is topic modeling, which aims to extract thematic

collections of words that could represent topics, from a large corpus of text documents. The

representations learned from topic models can be used for downstream tasks that rely on

document representations, such as finding similar documents (document recommendation),

finding similar topics, analyzing the variation of topics over time, etc.

In this work, we propose ETD-Topics, a topic modeling based framework for analyzing and

discovering information contained in ETDs using several state-of-the-art topic models. Our

framework allows users to extract topics present in an ETD collection using any one of the

several topic models provided. Users can then select a topic of interest, and do further anal-

ysis of the topic using multiple end-user services supported in our framework. Supported

services include searching documents associated with a particular topic, calculating the dis-

tribution of the documents w.r.t. topics, document recommendation, topic recommendation,

and topic trend analysis based on time range and/or university. Moreover, since topic mod-
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els are unsupervised in nature, our framework does not require any handcrafted labels such

as categories, thereby making it easily deployable and scalable for new document collections.

7.2 System Architecture

Figure 7.1: An overview of ETD-Topics.

Fig. 7.1 shows the architecture of our framework, as described below.

7.2.1 Data Source

Since our framework aims to assist in analysis of massive amounts of ETD data, we require

a large collection of text ETDs. For each ETD, we use its title and abstract as the corre-

sponding text. This text is then tokenized and goes through a series of preprocessing steps,

such as stop word and punctuation removal, removing terms with low document frequency

(infrequent words), and lemmatization. We also drop documents whose token count is less

that a certain threshold number (20 in this case), as these are likely to be documents with

limited or missing text. Finally, we obtain a list of tokens for each document that can be

sent to the topic modeling module.



7.2.2 Topic Modeling

This module forms the main backbone of our system. It takes the preprocessed data as input

and uses topic modeling algorithms to extract the topics from the document corpus. The

topic modeling algorithms currently supported are:

• LDA [6]: LDA is one of the earliest topic models, that uses Bayesian priors as the ini-

tial document-topic and topic-word assignments, and then updates these distributions

based on the probability with which a document or a word is associated with a certain

topic.

• NeuralLDA [36]: This is the neural network based version of LDA, that utilizes a

variational inference method for learning document-topic representations.

• ProdLDA [36]: This is an improved version of NeuralLDA, that is designed to give

more coherent and interpretable topics.

• CTM [5]: In contrast to other topic models that use bag-of-words representations for

text and hence ignore the order of words, this model combines representations from

language models like BERT [20] in the topic modeling process, thus incorporating word

context.

Since topic models require several iterations over the dataset for training, we train all the

models offline, using different numbers of topics for each model. We set the number of

topics (denoted as K) to {10, 25, 50, 100} while training the models, thus resulting in 16

pre-trained models (4 models, each with a different value of K, for each of the 4 algorithms

listed above).

Topic models typically give two types of outputs. The first is a K×V topic-word distribution

matrix, where V is the vocabulary size. Each matrix row represents the importance of each

of the words in the vocabulary for the respective topic. The second is an M ×K document-



topic distribution matrix, where M is the number of documents in the corpus; each row

represents the proportion of each of the topics in the respective document.

7.2.3 User Services

The front end user interface (UI) encapsulates multiple downstream tasks and services for

users of a digital library. Below are descriptions of services illustrated in Fig. 7.2.

Topic Browser

Our framework allows users to select a topic modeling technique and number of topics. Users

can then use the following services:

• Documents per Topic Distribution: This module helps users find the most popular

topics in the document collection. Given a threshold value (on a scale of [0, 1], default

= 0.3) and a topic, this component calculates the number of documents in the entire

database for which the given topic constituted more than the threshold. The overall

results are displayed as a histogram, where each bar shows the number of documents

for that respective topic.

• Topic List: For every topic, this module shows the top 10 words that are representa-

tive of that topic; the set thus serves as a type of label. Because of the unsupervised

nature of topic models, it is not possible to get a short semantically/disciplinary ap-

propriate label for each topic. Hence, we display the top representative words for each

topic.

• Similar Topics: Some users work in interdisciplinary fields. Often, a selected topic

might not be directly related to users’ preferences, but might still be correlated with

the users’ requirements, e.g., for researchers working in inter-disciplinary fields. In



Figure 7.2: A snapshot of different user services. (a) Documents per Topic Distribution and
Topic List, (b) Similar Topics and Topic Specific Documents for one topic, (c) Document
page showing Related Topics and Similar Documents for one document, (d) Trend Analysis.



such instances, it is often desirable to show a list of related topics to the user. To

facilitate this process, this module shows related topics for a given topic. This is done

based on similarities between different rows of the topic-word matrix.

Document Browser

The document browser allows users to get specific documents based on their interests. It

mainly consists of two modules:

• Topic Specific Documents: This module allows users to get relevant documents for

one of the many topics shown in the Topic Browser. It selects the documents based

on the presence of the selected topic in the document using the corresponding values

of the document-topic vectors. It then displays the title and abstract of the selected

document. It also allows users to get more details of a specific document by clicking

on it.

• Related Documents: This module assists users in finding documents that are similar

to a selected document. This is especially useful in the case of scholarly documents,

since users are typically interested in finding multiple related works.

Topic Trend Analysis

• Temporal Analysis: Many users of a digital library, such as university administrators

and faculty members, are interested in analyzing how different research areas trend over

time. This module allows users to filter documents associated with a topic in a given

time range (in years).

• University-Specific Analysis: In some instances, users are interested in analyzing

research trends in their institution, or in peer institutions. This module shows users



such research trends, by university. Additionally, users can combine this feature with

temporal analysis to visualize institution-specific research trends over time.

7.3 System Setup and Analysis

The discussion in this section corresponds to what is reported in [15]. Since the study

reported therein, our collection (both size and scope) and work with ETD-Topics has broad-

ened.

7.3.1 Dataset and System Details

Our dataset has ∼320K ETDs from over 42 universities. They come from 1845 – 2020, with

most published after 1945. Our topic models are from open source implementations included

in OCTIS [37]. The UI was developed using Flask1 with a Python backend.

7.3.2 Evaluation Metrics

We evaluate the different topic modeling algorithms on two commonly used metrics from

the topic modeling literature. These are explained below:

• Diversity is a measure of how distinct the top words of a topic are w.r.t. top words in

other topics. A score of 0 indicates redundancy, while 1 indicates very diverse topics.

• Coherence measures the degree of semantic similarity between top words from the

same topic. Models with high coherence tend to give more interpretable topics.

1https://flask.palletsprojects.com/

https://flask.palletsprojects.com/


Diversity Coherence
Topics LDA NeuralLDA ProdLDA CTM LDA NeuralLDA ProdLDA CTM

10 0.75 1 0.96 1 0.044 -0.057 0.037 0.104
25 0.752 1 0.94 0.94 0.080 -0.038 0.077 0.114
50 0.792 0.988 0.92 0.948 0.076 -0.037 0.116 0.136
100 0.831 0.937 0.858 0.879 0.076 -0.039 0.117 0.130

Table 7.1: Quantitative comparison of different models, with underlined values indicating
best performing models.

Model Words
LDA network communication user channel mobile security node wireless protocol

NeuralLDA thesis network perform introduce efficient end describe integrate linear
ProdLDA network problem challenge approach base provide system design framework

CTM network protocol ad mobile node attack internet secure request

Table 7.2: Corresponding words for a topic from different models.

7.3.3 Comparison of Different Topic Models

Table 7.1 shows the performance of the four different topic models, for each of the four

numbers of topics, on our collection, for the two metrics discussed above.

We observe that NeuralLDA produces more diverse topics than other models, indicated by its

high diversity score, with CTM being the second best performing model in terms of diversity.

However, the coherence scores for CTM are much better than other models, indicating more

interpretable topics. A good topic model should ideally have high coherence and diversity

scores, since high diversity and low coherence could also mean that the topics are composed

of unique, yet unrelated words which do not indicate any themes. In Table 7.2 we also show

the corresponding words for one topic obtained from all the models. The topic produced by

NeuralLDA is less coherent, indicated by words like thesis and introduce, in line with its low

coherence scores. In contrast, the topics produced by LDA and ProdLDA are cleaner and

have fewer words that are semantically different than the rest of the words, though they do

have some open-ended words like user and provide. CTM produces the most coherent topic,



which is also reflected by its high coherence scores. It appears that CTM is the best overall

performing model on our ETD corpus.

7.4 Integrating ETD-Topics with Other End-User Ser-

vices

In addition to supporting browsing and navigation by means of end-user services illustrated

in Fig. 7.1, our framework can be integrated with many other APIs and end-user services

that require document representations for user satisfaction. An example of such a service is

a search / information retrieval system, which allows users to search for documents related

to user queries.

7.4.1 Overview of Information Retrieval Systems

Many modern information retrieval systems use search engine frameworks like Apache Lucene2

and Apache Solr3, which can be used to search for documents that match a user query in

a large document collection. Users can then obtain detailed information that best satisfies

their query by clicking on one or more documents returned by the search engine. However,

often the document(s) returned by the search engine do not fully satisfy users’ requirements.

This is especially the case in scholarly document search, where many users are interested in

a wide range of documents, e.g., while doing literature surveys.

2https://lucene.apache.org/
3https://solr.apache.org/

https://lucene.apache.org/
https://solr.apache.org/


Figure 7.3: Integrating search engine module with topic models from ETD-Topics framework
for document recommendation. An example of a search query, its search results returned by
a BM25 based search engine, and recommended documents for one highlighted document
are shown.

7.4.2 Integrating Document Recommendation with Document Re-

trieval

To improve user experience, a search and retrieval service is often integrated with a document

recommendation service to allow users access to a wider range of possibly relevant documents.

Traditional document recommendation systems primarily rely on historical user click logs.

Such logs can be difficult to obtain for scholarly documents such as ETDs, since many

ETD-related services are offered by university libraries which have a smaller user base as

compared to commercially available services. Document recommendation services in such

scenarios hence need to be supported using auxiliary information that does not rely on user

logs.

Our framework supports document recommendation using the document representations

learned from topic models, which can be used to find semantically similar documents. Since



the topic modeling based representations can be learned in an unsupervised way, it does not

require large amounts of user logs to support such services. An overview of this integration

is illustrated in Fig. 7.3. After a user sends a search query to the search engine, the

search engine returns a set of documents presumed relevant to the query. A user can then

select a document of interest to obtain more information about that document. This is

further integrated with a document recommendation module that utilizes the topic models

to first obtain the document representation, and then uses an approximate nearest neighbors

technique to compute a list of similar documents. This list is then displayed to the user as

recommended documents.

7.4.3 Extending Topic Modeling from Documents to Chapters

The CS 5604 class in Fall 2022 at Virginia Tech worked on an integrated system for ETDs

that will support APIs for several services such as search, question-answering, chapter seg-

mentation, chapter summarization, etc. [7]. In future, using the segmented chapters and

their corresponding text for the ETD corpus, chapter-level topics could be extracted us-

ing the pre-trained topic models, by means of the framework proposed in this work. The

end-user services proposed in this chapter, such as document recommendation and searching

documents by topics, can then be supported at the level of chapters to support chapter

recommendation and searching chapters by topics. This remains a work for the future.

7.5 Further Evaluation

Further evaluation of some of the components proposed in this chapter, such as evaluating

the quality of recommended documents, requires user studies. The system developed by the



CS 5604 class is aimed at supporting user studies, and in the future can be extended and

used to evaluate such components. These user studies, however, will be conducted by other

graduate students and their results will be included as part of their research.



Chapter 8

Conclusion

8.1 Conclusion

This dissertation aims to address the needs of digital library users by developing datasets,

techniques, and systems for analyzing and navigating long documents, such as ETDs. Since

end-user services in a digital library often rely on NLP models that require data in a machine-

friendly format, a significant part of this research aims to address the problem of document

parsing, by means of object detection based layout analysis methods. As a use-case for the

extracted data and to address the problem of limited training data for supporting end-user

services such as document browsing and recommendation, we also present a topic-modeling

based framework for ETDs.

In summary, the contributions of this research are as follows.

• We develop datasets for training object detection based layout analysis methods for

long scholarly documents. These datasets cover a range of document types, such as

born-digital and scanned documents. They could also be useful for layout analysis on

other types of documents, such as books and patents, due to an overlapping set of

object types such as figures, tables, and paragraphs. Hence, we expect these datasets

to be a valuable resource for the document understanding community.

• We develop methodologies for document parsing and information extraction from long
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scholarly documents. We hope that they will be helpful in making long documents more

accessible and reader-friendly, by supporting other end-user services such as document

search and retrieval, question-answering, and long document summarization. They

will also allow easy testing of document understanding methods, and we expect them

to be a valuable resource for the wider research community.

• To support the needs of digital library users by means of end-user services, we also

propose a topic modeling framework for document browsing and recommendation. The

unsupervised nature of topic modeling addresses the problem of a unified classification

ontology as well as lack of labeled data by research topics.

8.2 Summary of Hypotheses

In this section, we give a brief summary of the hypotheses listed in Chapter 1, and the results

obtained in their evaluation. For hypotheses that remain to be evaluated, an evaluation plan

is summarized.

• H1: Object detection based document layout analysis methods for long scholarly docu-

ments, trained on high quality domain-specific labeled data, perform better than those

trained on a larger dataset originating from other related domains, such as research

papers.

Status: True.

Explanation: As shown in Table 3.4, models trained on a smaller dataset of objects

originating from ETDs perform better than those on trained on a larger dataset of

objects from research papers, like DocBank.

• H2: Pre-training on other scholarly datasets, albeit from a different domain such as

research papers, improves the performance of document layout analysis methods on



long scholarly documents such as ETDs.

Status: True.

Explanation: As shown in Table 3.2, models like Faster-RCNN* that are pre-trained

on other scholarly datasets and then fine-tuned on ETD dataset perform better than

those that were not pre-trained.

• H3: Training on derived datasets, such as augmented versions of the original training

data, can significantly improve the performance of layout analysis models.

Status: True.

Explanation: As shown in Table 4.1, training on a dataset obtained by augmenting

images in the original dataset improves the object detection performance.

• H4: To perform well on other document types, such as scanned documents, object

detection models trained on a specific type of documents, such as born-digital ones,

require additional training using techniques, like augmentation, that help bridge the

distribution gap.

Status: True

Explanation: The results shown in Table 4.2 show that augmentation-based training

results in significant performance improvement for layout analysis of scanned docu-

ments.

• H5: AI-aided annotation methods, such as using models trained on existing smaller

datasets to extract weak labels for unlabeled data, reduce the resources required for

annotating additional data.

Status: True.

Explanation: The comparison of annotation time for manual annotation vs. AI-aided

annotation shown in Figure 5.4 shows that model assistanvce significantly reduces

annotation time.

• H6: Models trained on datasets with skewed distribution in terms of class labels



achieve better performance on minority classes when trained on additional data from

those classes, such as from AI-aided annotation methods.

Status: True.

Explanation: The mAP values of models fine-tuned on the dataset resulting out of

AI-aided annotation are higher than those of the initial models (i.e., the model without

fine-tuning on the new dataset), as shown in Table 5.4.

• H7: Combining the predictive power of AI models with rules formulated based on

domain expertise possessed by humans reduces errors in predictive tasks such as doc-

ument structure parsing.

Status: True.

Explanation: A case study was done on a small sample of ETDs by a team from

CS4624 class of Spring 2023. Some of the common errors, as well as rules to remediate

them are discussed in Section 6.3.1. Based on the finding of aforementioned study, it

was determined that post-processing rules are essential for document parsing.

• H8: Neural topic models can outperform other traditional topic models, such as LDA,

while doing topic modeling on scholarly documents such as ETDs and their chapters.

Status: True.

Explanation: The results shown in Tables 7.1 and 7.2 show that neural topic models

like CTM perform better than LDA.
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