
A Formal Language for Digital Libraries using Denotational
Semantics

Neill A. Kipp, Edward A. Fox

Virginia Polytechnic Institute and State University

{nkipp,fox}@vt.edu

DRAFT: January 16, 1998

ABSTRACT
We formalize the operation of a digital library using de-
notational semantics for a language that expresses inter-
action with a digital library. The formalization defines
digital objects and their relationship to their metadata,
how digital objects are added and removed from digital
library collections, how searching is performed on the
collections, and how authored interfaces to collections
are created and presented to users. In so doing, we
provide an ontology for discussion of the construction
and operation of digital libraries—to provide a scien-
tific basis for their design evolution and a tool for their
pedagogical manipulation—and compare it to existing
digital library designs. Finally, we show how a multi-
dimensional digital library interface may be built from
the formal semantics using 4S: sets, streams, spaces,
and scenarios.

KEYWORDS: Digital libraries, Open Systems, Interna-
tional Standards

Knowledge and Language
While digital library projects continue to grow and flour-
ish, we require formal treatments to coordinate our digi-
tal library efforts, especially for the purposes of interop-
erability. We begin with an exploration of key concepts.

Knowledge is useless without language. This Vygot-
skian axiom roots our lifelong education. Language en-
ables us to express what we know, and it effects the way
we seek to know more [4]. Both question and answer are
part of our language. We approach a library—the or-
ganized storehouse of knowledge—with a question, and
we return with information in the form of an answer, or

documents possibly containing answers. It is necessary,
therefore, to treat interactions with a digital library the
same way—with language.

The operation of a library, therefore, can be defined in
terms of the language of conversation between a user
and the library as the user seeks information from the
library [1]. The conversation between a user and a li-
brary is analogous to the interactions between a software
program’s statements and the computer’s memory and
storage devices. Therefore, we model the language of
a digital library with a formal programming language,
and show how each operation in the formal language
relates to our own understanding of the way a library
operates using denotational semantics.

To begin this model, we define digital library in a ‘de-
notational’ fashion, structured so that the meaning of
the whole is expressed in terms of its immediate con-
stituents [19]. A digital library, then, is the combi-
nation of terms ‘digital’ and ‘library.’ Amending one
noted librarian’s definition of library, we have a “collec-
tion of [digital] graphic materials arranged for relatively
easy use [i.e., online access], cared for by an individual
or individuals [in combination with computer software
routines] familiar with the arrangement, and accessible
to at least a limited number of persons [or other com-
puters]” [7]. Below we see how digital libraries are the
denotational combination of their collections, metadata,
search methods, and presentation.

The “collection of digital materials” is the set of elec-
tronic information objects contained within the digital
library. Objects can be acquired and added to the li-
brary collection, and, in reverse, objects can be retired
and removed from the collection. Digtal migration and
integrity checking are part of maintaining the digital col-
lection [6]. This aligns with Kahn and Wilensky’s def-
inition of ‘repository,’ deposit, access, and mutability.
While objects in their repository, however, may never
be removed, our definition of collection will allow ob-
jects to be removed.

Neill,Please look this over and call me or see me at your earlierst convenience Monday. I'm likely to be in McB in the morning, and over at PWC in the afternoon to unpack, and then in McB in the evening. Thanks, eafPS I'm not including the stuff you wanted me to look over and send back on Friday, which I sent later that night, and which is not in here.

Neill, did you look at this paper and does it cover what is said in this sentence, or should I find another suitable article by Belkin?

Don't we want to handle multiple users, and collaboration between them? Do we want the users inside the DL? I'd reword this sentence tp "between users and the library as the users seek"

add comma after "operates"

Should you move the "[7]" to in between "library" and the following comma?

How about ending the sentence:"collections, metadata, and services (e.g., search methods and presentation)."

Digital

An item in the collection is accessed by position, at-
tributes (name, keywords, color, size, or other features),
or through searching or matching. For our purposes,
though, a collection is a mathematical relationship: a
set of ordered pairs whose first item is an identifier (ex-
tended, perhaps, by passwords or receipts indicating
payment of royalties) and whose second is the stored dig-
ital object (extended perhaps by terms and conditions).
By “position or attributes” we mean the sometimes com-
plex combinations of comprehensive attributes that are
required to identify an object fully. The set of all at-
tributes of a collection item is its metadata. This is
consistent with Kahn and Wilensky, whose definition of
digital object includes the object’s metadata [11]. To
help support a plethora of usage patterns, characteriza-
tion of library materials can become verbose (perhaps
because indexers themselves agree on terms only half
the time! [14]). We see that richly structured metadata
is vital for objects in the digital library.

A variety of search mechanisms may be built that op-
erate on the collection to facilitate retrieval of the digital
objects. Furthermore, performance of the search mecha-
nisms may be improved by the creation of indexes. Each
object type must provide its own search function (or, by
default, delegate that responsibility to the library). The
digital library aggregates the variety of search functions
as part of its interface.

Libraries always have relied upon a coherent, inherent
organization and an aesthetic presentation of the infor-
mation they contain. Indeed, librarians, for 4000 years,
have organized and presented information for public use.
Librarians rely on both art and science to achieve their
ends. High ceilings, large windows, ornate fixtures, con-
trolled vocabularies, and human ergonomics have always
provided an altruistic context to efficient information re-
ception in a library [7].

Our goal in designing the collection, metadata, search-
ing, and presentation is to achieve a digital library that
is useful and easy to use.

Formal System
In the following, we present a formal system as an ab-
straction for digital libraries and show how manipula-
tions of statements within that system strictly specify
how the abstract digital library controls its collection,
metadata, searching, and presentation.

The operation of the interpreter of our abstract language
is as follows. Using a browsing device that is connected
to the digital library, the user submits a statement to the
digital library to be evaluated. The library replies with
some information and perhaps some alternatives. The
user chooses an alternative by submitting a statement
to the digital library, to which the library replies, and

the cycle continues. This process is analogous to when
a user asks the physical library: ‘Where are the science
books?’ and the library replies with these alternatives:
‘Lobby: 1st floor, Art books: 2nd floor, Science books:
3rd floor.’

A formal system is made up of a formal language and
a deductive apparatus. The formal language consists of
an alphabet of symbols and the rules for construction
of well-formed formulas (wffs) from the alphabet. The
deductive apparatus consists of some wffs that are des-
ignated as axioms and a two-place relationship between
wffs and wffs. Note that semantic attachment is not
part of the formal system [8].

We must, however, associate semantics to the parts of
a formal system to obtain a formal model for systems
of real-world phenomena. If all the statements obtain-
able by the deductive apparatus “are truths” in the real
world, then the formal system is consistent. If the for-
mal system is consistent, and if all semantic notions in
the real world can be represented in the model, then
the system is complete [13]. Consistency can be proved
syntactically, but to have a completeness proof of this
formal system, we must first have consensus in the real
world regarding the definition of digital libraries.

Formal Language and Deductive Apparatus
The alphabet for our formal language is the set {0,1}.
We therefore include everything that can be represented
by a digital computer. For kindness in presentation,
however, we will use as our alphabet the symbols avail-
able on a common typewriter and assume that they can
be mapped uniquely onto our alphabet (using ASCII
or Unicode, for example). We define a well-formed for-
mula (wff) to be any string of members of of the above
alphabet.

The deductive apparatus is as follows. Symbol D is the
only axiom. Anything derivable from D by the follow-
ing context-free grammar is a theorem. Nothing else
is a theorem. Because languages generated by context-
free grammars are decidable, we can always determine
whether a string of alphabet symbols is a theorem in
our formal system. [15]

Grammar
The following is a context-free grammar in Backus-Naur
Notation (BNF) [18]. Lowercase epsilon (ε) denotes the
empty string.

A ::= ε | KA
V ::= A | Q | I | L
Q ::= () | (Q′)

Q′ ::= E | E Q′

insert in between "accessed" and "by":directly or indirectly, possibly through a series of steps (e.g., use a bookmark and then follow a link):"

Delete exclamation mark

change "is" to "can be"

insert between "functions" and "as":internally for more effective data fusion and ranking [1] and externally

delete "always"

change "Our" to "A key"

change "these alternatives:" to"alternatives like"

Start sentence with:However, we must

change to:first must

fix:of of

The above par. is good. However, you ignore this hereafter, and so have many things being a DL that don't qualify according to this idea of having an organization principle. Thus, you have WWW is a DL (see later).

E ::= V | search E | alt E E

C ::= E | I = E | add E | remove L |
interface I Q | C C

D ::= C

Semantic Domains
Each component of the denotional semantics is below.
We begin by associating semantics with each of the syn-
tactic symbols.

First we give meaning to the various symbols in the
language.

K : k-tuple = {0, 1}k, k ≥ 1

A : String

V : Value

Q : Stream

I : Identifier

L : Location

F : Interface

E : Expression

C : Command

D : Digital Library

Values
A character K is a k-tuple of bits. A string A is a list
of characters. A value V is either a string, a stream, an
identifier, or a location. An identifier I denotes a named
storage location. A location L is the unique identifier of
a storage location in the digital library’s collection, as
it is assigned by the system.

A stream S is a sequence of values. Note that streams
can contain streams. Thereby, key-value pairs are rep-
resented easily, e.g., ((author Kipp) (degree PhD) (ma-
jor CS). Note too, that while SGML documents them-
selves are strings, the parsed versions of SGML doc-
uments can be represented by a stream that contains
streams. [9, 3].

Next we define the set domains for each grammatical
symbol. In the following, cross-product X × Y denotes
the set of ordered pairs (x, y), x ∈ X and y ∈ Y , while
co-product X + Y denotes the disjoint union of X and
Y , {x1, x2, ..., xn, y1, y2, ..., ym} = X+Y, xi ∈ X, yj ∈ Y.

Char : {0, 1}k

String : Char×Char× ...×Char

Value : String + Identifier

+Location + Stream

Stream : Value×Value× ...×Value

Store
A Store is a function from identifiers to values, repre-
sented by shorthand notation v = f [X] which denotes
the mapping from identifier X to retrieved value v.

Notation f ′ = f [X/y] represents the Storage function.
Storage maps a function to a function: we obtain the
new store f ′ from f by modifying f such that the lo-
cation represented by X gets the value y and all other
locations in f remain unchanged.

In the digital library we have the Collection for dig-
ital objects and the Store for interfaces, streams, and
strings. Both collection and store are sets of type Store.

Store : Identifier→ Value

Storage : Store→ Identifier→ Value→ Store

Expression Evaluation
The process of evaluation E maps (the syntactic repre-
sentation of) an expression, a store, and a collection to a
value. Generic notation E [[X]] s c denotes the syntactic
evaluation of X under E with respect to stores s and c.
The same is true for C (for commands) and D (for the
whole digital library) below.

E : Expression → Store → Collection → Value

Command Execution
The process of command execution maps (the syntactic
representation of) a command, a store, and a collection
to a store and a collection.

C : Command → Store → Collection →
(Store × Collection)

Digital Libary
Lastly, a digital library is the process of mapping a com-
mand and a special state and collection where all values
in the store and collection are empty strings to a store
and collection.

D : Command → Store→ Collection →
(Store × Collection)

Semantic Evaluation
Now that we have the syntax, domains, and mappings
declared, we can specify the exact operations for each.
For this, we must instantiate store s ∈ Store and col-
lection c ∈ Collection.

We have not yet introduced that we use sets. I suggest we add, perhaps here, a sentence:We make exhaustive use of the concept of sets as the foundation for digital libraries.

Is there only one identifier? Why? Should we change "the" to "a"?

change "as it is assigned" to:directly usable

I'm still not sure this is clear. Maybe insert something like the following between "documents" and "can":(often stored as tree structures)

Should not we have page numbers at the bottom of each page after page 1?

move this defn to after the 1st par. above

move the defn for Store here

move the defn for Storage here

move this defn to after the 2nd par in this column, above

Explain "Generic notation"

between "c" and the period, insert: (typically a store and collection)

The above par. leads to lots of related questions:1. Are we overloading the term "Store"? Does that make it hard to follow the discussion?2. Do we need a separate notation for the concept here: "type"?3. Should not we distinguish between Store and Collection, syntactically? Since you do not have types in this paper, or category theory, should not your grammar for digital libraries have a rule for Collection, two symbols to cover the two meanings of Store, etc.

Where do you define "digital objects"?

"sets of type Store:explain

Rewrite "Both collection and store" to:Both the collection and the store"

Where do you define the arrow? What does a series of arrows mean? Should this instead be: (Store, Identifier, Value) -> Storeor (Store x Identifier x Value) -> Store

Where do you explain "process"? How does it relate to functions, grammars, language, scenarios?

Add:Streams are important concepts for handling multimedia information, which is often of great importance in a digital library.

Add:Streams can be given, either in key-value pair form (e.g., x=x1, y=y1, z=z1)or as tuples (e.g., (x1, y1, z1)), to describe spaces, another key abstraction for digital libraries (as in vector spaces or concept spaces).

Expression Evaluation
Evaluation of a string yields the string itself. Evaluation
of an identifier yields the value in the store to which that
identifier refers. Evaluation of a location yields the value
in the collection to which the location refers.

E [[A]] s c = A

E [[I]] s c = s[I]

E [[L]] s c = c[L]

Evaluation of a stream yields the stream itself, with all
contained expressions having been resolved into their
corresponding values.

E [[Q]] s c = q,

where q =

 () if Q = (),
(E [[Q′]]) otherwise, i.e.,

when Q = (Q′)

E [[Q′]] s c = q′,

where q′ =

E [[E]] if Q′ = E,

E [[E]] E [[Q′]] otherwise,
i.e., when Q′ = (E Q′)

The search expression calls each stored digital library
object’s search expression and returns a stream of the
collection locations of the digital objects whose search
returned true.

The semantics of the search function depends on the
semantics of the particular type of the stored digital
object. For ASCII text, search should simply be a lit-
eral string match or a string match with regular expres-
sions, and will likely be provided through a function li-
brary available to the digital library. In structured text,
the function should operate using a query language for
fielded search (e.g., SDQL from DSSSL [10]). If the digi-
tal object is an image (e.g., JPEG, EPS), then the query
itself might be a comparable image [5], with the function
returning true if a match was found. If the digital ob-
ject is a table, spreadsheet, or declared space, then the
functions that interpret those data types should return
matches appropriately.

E [[search E]] s c = q

where q ∈ Q is a stream as follows:
for each (l, v) ∈ c, v 6= ε,

if search(c[l], e) = true then
l is appended onto the stream q,
no operation otherwise,

and where e = E [[E]] s c.

To support querying with ranked results, we must mod-
ify the construction of q as follows:

for each (l, v) ∈ c, v 6= ε,
z = search(c[l], e), with z ∈ Integer

if z > 0, then the stream (z l)
is inserted into the stream q,
preserving the z-sort on q;
no operation otherwise,

and where e = E [[E]] s c.

The expression alt with two arguments denotes that
value obtained from the evaluation of the second expres-
sion be ‘presented.’ (Recall the usage scenario in the in-
troduction, where a browsing device allows a user to in-
terrogate the system and the system to reply.) The sec-
ond expression is a linguistic expression (word, phrase,
icon) provided as a “hint” to “feed the user forward”
to the next interface presentation. Should the user ac-
cept the hint and request that the results of the first
expression be presented, a verbatim copy of the first ex-
pression will be sent (by the browsing device) to the ex-
pression evaluator for the digital library. Note that this
functionality is analogous to document presentation and
hypertext linking [16].

E [[alt E1 E2]] s c = e,

where e = E [[E2]] s c.

Expressions as Commands
The evaluation of an expression as a command is a null
operation on state and collection. In the context of us-
age, however, the results of the evaluation of the expres-
sion are returned to the user.

C[[E]] s c = s c,

where e = E [[E]] s c

is passed to the browsing device

The assignment command assigns the results of evalu-
ation of E to the identifier I. A new store results. The
collection is unaffected.

C[[I = E]] s c = s[I/e] c,

where e = E [[E]] s c.

should not you have "s c" before the closing paren in this clause of the defn?

change "whose" to" where the"

add after "true" and before the period:(intuitively, it finds "matches")

add between "a" and "match":satisficing

declared space: explain/define

add before the final period:(perhaps by applying particular constraints)

Where do you explain about arguments, and functions being in LISP notation (fn arg1 arg2)

add "the" after "that"

add "should" before "be"

Where do you explain "the browsing device"? Does this mean a computer monitor? Computer? Mouse? Touch screen?

where do you define "state"? Why is not the interface part of "state"?

The add command adds the value resulting from the
evaluation of E—a digital library object with metadata,
represented by a string or stream—to the library’s col-
lection. Conventions for the specification of object and
metadata are left to a particular implementation of a
digital library. Without the add operation, one cannot
house a single book.

C[[add E]] s c = s c[l/e],

for l such that c[l] = ε and

e = E [[E]] s c.

The remove command removes a digital object from
the library’s collection. Without this operation, items
in the collection may never be retired, nor replaced by
new versions, for the lifetime of the library. Location L
is available as the output of a search.

C[[remove L]] s c = s c[L/ε]

The interface expression is a stream of values. Unlike
regular assignment, evaluation of Q is delayed until I is
evaluated.

E [[interface I Q]] s c = s[I/Q] c

Finally, the sequencing command allows multiple com-
mands to be sent to the library. The state that results
from the execution of C1 is used as the state for the
execution of C2.

C[[C1C2]] s c = C[[C2]] s′ c′,

where s′ c′ = C[[C1]] s c.

Digital Library
The digital library is the execution of its commands on
a state and collection which are initially empty.

D[[C]] = C[[C]] s c,

where for all I, s[I] = ε, and
for all L, c[L] = ε.

Example of Usage
Let us assume a reasonable concrete syntax and a simple
fielded search mechanism for the narrated example of a
digital library interaction that follows.

The following digital library command adds Moby Dick
by Melville to the collection (in the interest of space,
the full text of the book is represented by the ellipsis).
Note how the metadata is a stream of key-value pairs.

add(((type, "book"),

(title, "Moby Dick"),

(author, "Melville"),

(body, "Call me Ishmael...")));

In the same way, we add the Dickens classic, A Tale of
Two Cities. Note that both books have the same meta-
data structure. Standards for the electronic representa-
tion of metadata include Machine-Readable Cataloging
(MARC) and the Dublin Core.

add(((type, "book"),

(title, "A Tale of Two Cities"),

(author, "Dickens"),

(body, "It was the best

of times...")));

The following assignment leaves the string “nkippvt.edu”
in the digital library’s store using identifier “admin.”

admin = "nkipp@vt.edu";

The first interface definition follows. This construct
binds the value “initial” to the stream of expressions.
This interface may be invoked by simply stating “ini-
tial” to the expression interpreter. The user interface
will receive this data (including the resolution of “ad-
min” with the current state) according to the processing
model defined above.

interface initial (

"Simple Digital Library",

alt(titlescreen, "titles"),

alt(authorscreen, "authors"),

"Administrator:", admin);

Next we declare two more interface objects and add an-
other book.

interface titlescreen (

"Titles",

alt(search("title<=K"), "A - K"),

alt(search("title>K"), "L - Z")

"Administrator:", admin);

Do you mean "is" or rather:leads to

Add "@" into your address here

Table 1: Sample User Interaction
User Digital Library
initial;

Simple Digital Library
titles §
authors §
Administrator: nkipp@vt.edu

titlescreen;
Titles
A - K §
L - Z §
Administrator: nkipp@vt.edu

search(‘title<=K’);
A Tale of Two Cities §
Anna Karenina §

0xae2460;

interface authorscreen (

"Authors",

alt(search("author<=K"), "A - K"),

alt(search("author>K"), "L - Z"),

"Administrator:", admin);

add(((type, "book"),

(title, "Anna Karenina"),

(author, "Tolstoy"),

(body, "All happy families

resemble one another...")));

An example invocation of the interface as a dialog occurs
in the columns below. Symbol “§” indicates to the user
that a hypertext link may be followed (see Table 1).

where 0xae2460 is the location of the collection item
whose title is Anna Karenina.

Should the librarian wish to remove Anna Karenina
from the collection, he or she can submit the following
command to the digital library.

remove(search("title=’Anna Karenina’"));

Discussion
The above description makes a simple, useful formal-
ism for the creation and maintenance of digital libraries.
We perceive its primary application is for instruction:
to teach students how to characterize digital libraries
by giving formalisms to show how they treat collection,
metadata, search, and presentation. In the following,
we show how our digital library definition is consistent
with existing digital library definitions, designs, and im-
plementations.

Handles and the Repository
First, we address Kahn’s and Wilensky’s discussion of
digital object, repository, and handles [11]. We use their
notion of digital object as our own, though we do not
distinguish a handle from any of the other metadata—if
handles are required by an implementation, they may be

Table 2: Comparison of Kahn/Wilensky
Kahn/Wilensky Ours
digital object stream

key-metadata stream
metadata stream

repository collection
deposit do add
access do(handle) search

access reference services resolve identifier
handle string

resolve search
insert add
delete remove

specified in our model as a string within the digital ob-
ject stream (e.g., (add ((handle, ‘vt/kipp9801’) (body,
‘A Formal Language...’) etc.))). Kahn and Wilensky
leave all functions of interface to the various applica-
tions of the repository (see Table 2).

World Wide Web
The Web is a very large collection of digital objects,
some of whose only metadata is their name of their lo-
cation (URL). Indeed, organization of the Web is a strict
process, in that pages are linked together using only the
URL of each digital item as a linking device. Digital
objects may be added and removed, interface objects
may be written and accessed, and searches may be per-
formed. Therefore, while the Web is a digital library,
there is little consensus regarding subtleties of its orga-
nization and little hope that all materials in the collec-
tion have been reindexed an instant before one’s search
is performed.

A corollary to this is that Alta Vista and other search
engines are also digital libraries—ones whose digital ob-
jects are merely words and URLs found on the Web by
indexing robots. Furthermore, categorization engines
like Yahoo are also digital libraries—ones whose digital
objects are locations on the Web and whose information
objects categorize the contents of those locations.

Stanford Bus
The crux of Stanford’s Digital Library Infobus is engi-
neering how the operation we call searching is going to
take place in a widely distributed system [17]. Heteroge-
neous interoperation of digital libraries is made possible
by the InfoBus. While our model requires only that
searching exist, the InfoBus distributes responsibility—
for addition, removal, searching, and consistent presen-
tation of materials—to anyone who ‘rides the bus.’ Fur-
thermore, the “Interpay” operation for payment of roy-
alties is also part of searching. While Stanford separates
the functionality, we include negotiation and payment
of royalties as dialog contained in the search command,
e.g., (search “title = ‘Anna Karenina’ maxpay = $6.5
mycard = ‘MC-4234-...’ ”). We conclude that while
our model exactly specifies what happens in a digital
library, it does not attempt to engineer a solution for
the “search” function that scales across a wide network.

move this par into Table 1

change "their" to "the

Many do not consider WWW as a DL. They argue that it does not have a collection principle or control, or lacks a catalog.

These seem even less plausible as DLs

Table 3: Comparison to IBM Modules
IBM Modules Our procedure Our data
presentation browser streams
application browser streams
document manager commands/expressions strings/streams
storage subsystem commands store/collection
database add/remove/search streams
catalog add/remove/search streams
collection add/remove/search collection

IBM Modules
Gladney et al describe muliple object-oriented modules
for encapsulating data and functionality in a digital li-
brary context [5]. This detailed work concerns itself
with issues ranging from collection storage to presen-
tation management from an implementation perspec-
tive. Because our system separates procedures from
data and theirs pairs them (following the object-oriented
paradigm), the categorization is more complex (see Ta-
ble 3).

More interesting, perhaps, is how the particular mod-
ules might be implemented using our model as a basis.
Security servers are perhaps most interesting in this re-
spect. In our model, all security attributes will appear
in the stream of metadata that is associated with the
collection item upon its addtion to the archive. Because
all retrieval of secure data is through the search expres-
sion, necessary information (e.g., passwords) must be
presented when each search is made. In an implementa-
tion, of course, the security manager will facilitate this
operation, but the basis is simple: security is exactly
the careful combination of metadata and search crite-
ria. The same argument holds for indexing (optimizing
a search by building an index) and filtering (manipulat-
ing the output stream of a search).

Gladney ends his enumeration of digital library with
“agent modules.” Please see the comparison between
the formal model and “agents” the next section.

Michigan Agents
In the Michigan model (like IBM modules) all responsi-
bilities for digital library creation and maintenance are
shared among agents. There are three types of agents:
user interface agents, mediator agents, and collection
agents. The user interface agents maintain the input
and output to user interfaces, the mediator agents han-
dle the translations (like aggregating results lists) be-
tween user interface agents and collection agents, and
the collection agents storage and retrieval of the various
digital objects in the collection. Like the IBM modules,
the agents are objects—they have procedures and data.
The mapping, however, is clear. User interface agents
correspond to our browser device—both exchanges data
with the digital library system. The mediator agents im-
plement most of the searching functionality. The collec-
tion agents maintain the collection by adding, removing,

and retrieving digital objects.

Dienst Federated Servers
The Dienst digital library software, on which the Net-
worked Computer Science Technical Report Library (NC-
STRL) is based, implements digital library functional-
ity as we have described it. However, the most signifi-
cant characteristic of Dienst is that it supports federated
searching. Each library has a local collection of materi-
als that are accessed by the Dienst protocol as well as
the ability to access the collections other Dienst servers
across the Internet. In operation, the search expression
is distributed to participating libraries and integrated
results are presented to the user.

This is achieved in our model as follows, seeing how
each Dienst library a library of libraries. The Dienst
library collects digital objects that may be proxies for
entire libraries. When the search is performed, all digi-
tal objects in the collection are consulted, including the
library proxy for the remote sites, and results are re-
turned through that proxy.

4S: Sets, Streams, Spaces, and Scenarios
Designers of Agents, Modules, and InfoBus have con-
centrated their efforts on the various types of searching
that can occur in a digital library context, nearly avoid-
ing the obvious: that digital libraries are created to serve
a community of users [2]. We propose that more effort
be made to support users of digital libraries: to con-
centrate on building useful and usable interfaces that
enable digital librarians to organize collections in a va-
riety of ways for a variety of library users in a variety
of usage contexts including homes, laboratories, offices,
schools, and walk-up public terminals.

From the above set-theoretic formalization, one can see
how easily the interface stream can be delivered as a
hypertext using the HTML syntax, where the “alt” con-
struction maps onto E2. Many dig-
ital libraries (e.g., D-lib, NCSTRL) use the Web as their
primary user interface.

Furthermore, by simply reencoding the interface stream,
a team of digital library students at Virginia Tech, work-
ing on the Networked Digital Library of Theses and Dis-
sertations, have shown that the Virtual Reality Markup
Language (VRML) can be used to deliver virtual rooms
full of virtual books that allow the user to have the feel-
ing of being in a library, meanwhile taking full advan-
tage of all the directional cues and aesthetic presentation
librarians can utilize in a multi-dimensional space (See
Figure 1) [12].

Finally, because dialog must occur through time, we will
use our formalization to construct usage scenarios in
the spaces we declare to see how users approach the
library, what paths they take, and where they tarry, to

change ")" to "of" and then have the closing paren before the period

Why note have a new figure, from the work last semester, here instead of the above closing parenthetical comment?

Should there be a hypen in "reencoding"?

How about explaining more about 4S here, starting with:Accordingly, ...I'd have at least 2 paragraphs.You should explain here rationale for 4S, grabbing pieces from our paper as needed. By the way, was it ever made into a tech report? If not, please ask Paul to work with Jo-Anne Bogner to do that. Be sure to cite the tech report in this paper's references.

add "the" before "InfoBus"

change "nearly avoiding the obvious:" to:with less emphasis on the fact

add "is" between "library a"

Change "D-lib" which is not a DL, to something else that is, maybe ACM or IEEE-CS Digital Library

"al" ends with a period

rewrite "theirs"

what is a "procedure" and where is it defined?

What is a "browser" and where is it defined?

fix 'addtion"

add "in" before "the". Better, drop this par.

delete this parenthetical or if you must have it, change "like IBM modules" to:as with agents as they could be employed in IBM Digital Library)

add "manage" between "agents storage"

Start this sentence instead "The agents"

change "exchanges" to "exchange"

I'm not sure I understand or agree with your last 2 sentences in this par. You don't really explain NCSTRL in terms of the formal model, but rather introduce "proxies" without explaining them or saying how they work. If you want to include this example, you will need more space, and have to get down to stores, collections, commands, streams, etc.

see how we may improve our interfaces to benefit our
users.

Acknowledgments
Layne Watson guided the early development of the basic
formalism. Paul Mather and Franciso Jaen-Martinez
also have contributed to the ongoing definition of 4S.
The National Science Foundation, through grants CDA-
9312611 and IRI-9116991, as well as SURA and U.S.
Dept. of Education, FIPSE Program (for their support
of our thesis and dissertation project), provided support.

REFERENCES
1. N. J. Belkin, P. Kantor, E. A. Fox, and J. A. Shaw.

Combining the evidence of multiple query represen-
tations for information retrieval. Information Pro-
cessing & Management, 31(3):431–448, May-June
1995.

2. Christine L. Borgman, et al. Social aspects of
digital libraries, November 1996. http://www-
lis.gseis.ucla.edu/DL/.

3. James J. Clark. SP: An SGML System Con-
forming to International Standard ISO 8879–
Standard Generalized Markup Language, August
1997. http://www.jclark.com/sp/.

4. Lisbeth Dixon-Krauss. Vygotsky in the Classroom.
Longman Publishers, White Plains, New York,
1996.

5. Henry M. Gladney, Edward A. Fox, Zahid Ahmed,
Ron Ashany, Nicholas J. Belkin, and Maria Ze-
mankova. Digital library: Gross structure and re-
quirements: Report from a March 1994 Workshop.
In John L. Schnase, John J. Leggett, Richard K.
Furuta, and Ted Metcalfe, editors, Proceedings of
Digital Libraries ’94: The First Annual Conf. on
the Theory and Practice of Digital Libraries, pages
101–107, College Station, TX, June 19-21, 1994.
Hypermedia Research Laboratory, Dept. of Com-
puter Science, Texas A&M Univ. Electronic pro-
ceedings at http://atg1.WUSTL.edu/DL94.

6. Peter Graham. Dl glossary. email, January 1998.
Rutgers University Libraries.

7. Michael H. Harris. History of Libraries in the West-
ern World. Scarecrow Press, Metuchen, NJ, 4th
edition, 1995.

8. Geoffrey Hunter. Metalogic: An Introduction to the
Metatheory of Standard First Order Logic. Univer-
sity of California Press, Berkeley, 1996.

9. International Organization for Standardization, ed-
itor. ISO 8879: Standard Generalized Markup Lan-
guage. ISO, 1986.

10. International Organization for Standardization, ed-
itor. ISO/IEC 10179: Document Style Semantics
and Specification Language (DSSSL). ISO/IEC,
1996.

11. Robert Kahn and Robert Wilensky. A framework
for distributed digital object services. Web page,
May 1995. http://www.cnri.reston.va.us/k-w.html.

12. Neill A. Kipp. Case study: Digital libraries with
a spatial metaphor. In SGML/XML ’97 Confer-
ence Proceedings, pages 631–639, Alexandria, VA,
December 1997. Graphic Communications Associ-
ation.

13. Virginia Klenk. Understanding Symbolic Logic, 3rd
edition. Prentice Hall, Inc., Englewood Cliffs, NJ,
1994.

14. Michael Lesk. Practical Digital Libraries: Books
Bytes and Bucks. Morgan Kauffmann Publishers,
San Francisco, CA, 1997.

15. Harry R. Lewis and Christos H. Papadimitriou. El-
ements of the Theory of Computation. Prentice
Hall, Englewood Cliffs, 1981.

16. Theodore H. Nelson. Literary Machines. Mindful
Press, Sausalito, 1990.

17. Andreas Paepcke, Steve B. Cousins, Hector Garcia-
Molina, Scott W. Hassan, Steven P. Ketchpel, Mar-
tin Röscheisen, and Terry Winograd. Using dis-
tributed objects for digital library interoperability.
IEEE Computer, May 1996. http://computer.org/
computer/dli/r50061/r50061.htm.

18. Robert W. Sebesta. Concepts of Programming Lan-
guages. Addison-Wesley, Menlo Park, 1996.

19. R. D. Tennent. Principles of Programming Lan-
guages. Prentice-Hall International, Englewood
Cliffs, 1981.

Change "Dl" to "DL"

This was not enough to make 4S clear. It ends with more new ideas, not explained adequately enough.Then you should have a section about your VRML interface to NDLTD. If you do that you need more under Ack. for the teams of students.The overall paper needs a summary/conclusion/future work.

