
Sets and Functions: A Foundation for Digital Libraries, through
Streams, Spaces, Structures, and Scenarios (S4)

Edward A. Fox, Neill A. Kipp, and Paul Mather

Virginia Polytechnic Institute and State University

Digital Libraries in particular, and Information Systems in general, engender no consensus regarding theoretical foundations.
In the trivial case, all information systems can be modeled mathematically as sets of information paired with the functions

that operate on that information. Using the abstractions Streams, Spaces, Structures, and Scenarios (S4), we bridge the stark
gap between the mathematical definition of a digital library and its pragmatic implementation by presenting a framework rich

enough to encompass the wide variety of hypermedia information systems. We show how these abstractions may be implemented
in HyTime and give examples related to the National Digital Library of Theses and Dissertations. We conclude by outlining

an approach to open Digital Libraries based on HyTime constructs.

Categories and Subject Descriptors: H.3 [Information Systems]: Information Storage and Retrieval; I.7.2 [Computing
Methodologies]: Text Processing—Document Preparation

General Terms: Theory, Design, Languages

Additional Key Words and Phrases: Digital libraries, Open Systems, International Standards

1. MOTIVATION

In Libraries of the Future, written 32 years ago, J.C.R. Licklider, Director of MIT’s Project MAC (sometimes
explained as “man and computer”), elucidated a research agenda for what we now call the field of digital
libraries [Licklider 1965]. As we take up that agenda, and hope for an elegant solution, it is worthwhile to
consider the theoretical challenge he provided [Licklider 1965, p. 78]:

The most promising approach, it seems to us, is to accept the notion that, for many years at
least, we shall not achieve a complete integration of knowledge, that we shall have to content
ourselves with diverse partial models of the universe. It may not be elegant to base some of the
models in geometry, some in logic, and others in natural language, but that may be the most
practicable solution.

Perhaps 32 years counts as ‘many years’ ? Perhaps there is a simple underlying foundation we can adopt,
from which the more familiar concepts of Streams, Spaces, Structures, and Scenarios (S4) can be derived—
and we can model digital libraries (DLs) elegantly with those concepts? Perhaps HyTime (ISO/IEC 10744)
[International Organization for Standardization 1992b] provides a rich enough descriptive capability to ex-
press our vision of DLs?

Our premise is that the minimalist foundation for DLs, and indeed for any information system, is sets and
functions. Licklider dealt with information, storage, organization and retrieval using sets, subsets, spaces,
functions, relations, predicate calculus, and higher-order languages [Licklider 1965, Ch. 3]. Operational

Name: Edward A. Fox, Neill A. Kipp, and Paul Mather
Address: e-mail: {fox,nkipp,paul}@cs.vt.edu

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice
on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works, requires prior specific permission and/or a fee.

Permissions may be requested from Publications Dept, ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212)
869-0481, or permissions@acm.org.

2 · E. A. Fox, N. A. Kipp, and P. Mather

systems do the same today. We can improve the situation, plus handle multimedia and hypertext, by
using sets and functions to define formally Streams, Spaces, Structures, and Scenarios to provide an easier
to understand (“higher level”) description of DLs. Software engineers and HCI researchers particularly
like scenarios. Modern DL researchers have used scenarios to explain DL operations from a variety of
perspectives [Gladney et al. 1994; Lynch and Garcia-Molina 1995]; Licklider provided an extensive one
[Licklider 1965, p. 45–58].

Licklider discussed ‘knowledge workers’ who operate in the real world and can contribute directly to DLs,
by starting with ‘primary nature,’ acquiring knowledge, and adding that to the library [Licklider 1965, p. 22].
Clearly their efforts must deal with 4D and other ‘spaces,’ ‘streams’ of knowledge and library information, and
‘functions’ such as transforms between spaces, indexing, and acquisition. Streams are a key representation
scheme for multimedia, and ‘structures’ are crucial for organizing knowledge, so both concepts can be used
directly in applications [Licklider 1965, p. 26].

We claim that we can use the concepts of Streams, Spaces, Structures, and Scenarios to describe key
aspects of DLs (and related fields). In the sections that follow we validate our claim, directly, and by
example, as we elaborate a framework for next-generation, open, integrated DLs.

1.1 NDLTD: A Digital Library with Users

DLs are nothing without users. The National Digital Library of Theses and Dissertations (NDLTD) [Fox
et al. 1996] is an effort to collect and integrate Electronic Theses and Dissertations (ETDs); the students
that produce them; the faculty committees that approve them; the graduate schools and university libraries
that accept and catalog them; the librarians that maintain them; the scholars and browsers that search,
study and annotate ETDs; and the personal/shared workspaces of all of these users. Only users will create
the NDLTD, fill it with new titles, strew it with hyperlinks, and manage its contents through time. Only
users will meet in the virtual stacks to talk about interesting additions, patterns of access, distribution of
ETDs, and the library itself.

Throughout this paper, we use the NDLTD as our example DL, and we see how sets, functions, streams,
spaces, structures, and scenarios will denote its formal and pragmatic design. Finally, we see how HyTime
will be used to encode a DL as rich as the NDLTD for open international use.

2. MINIMIZE AND RATIONALIZE THE DOMAIN

Our premise is that a DL is a set acted upon by functions.

2.1 Sets and Functions

Sets are collections of unique items. Items in a set are inert; items do not enter or leave a set until some
external force (a function) acts to insert or remove them. Without functions, therefore, sets cannot do
anything.

Functions are the operations that may create and destroy sets or insert and remove items from sets.
Functions may apply operations on the items in a set. Relationships between sets may be defined as functions
whose range is the set {true,false}; either the relationship is present, or it is not. Functions may generate
items, sets of items, or sets of sets. But clearly, without information to manipulate or generate, functions
are nothing.

2.2 Sets and Functions in the DL

Publication routines that lead to DLs are but one example of how functions—meant formally as a key concept
in our theoretical framework, but analogous to transforms, processes, filters, programs, and procedures which
will be used almost interchangeably where the subtle variations are clear—fit into the world of DLs.

In information retrieval, indexing is a key function. Matching is another, but has even more general
applicability in DLs, where one might hum a melody to find the right tune in a collection of MIDI files
[Ghias et al. 1995] or try to detect plagiarism [Shivakumar and Garcia-Molina 1995]. Matching may combine
various types of information [Fox 1983] or integrate results from various sources [Belkin et al. 1995].

Functions that transform information into information are at the heart of coding, decoding, compressing,

Sets and Functions: A Foundation for Digital Libraries, . . . · 3

decompressing, importing, exporting, rendering, displaying, and various types of information analysis (of
text, speech, image, video). In Project Athena, there are 11 editors to handle transforms of various media
forms and actions, as well as the high-level application constructor, MuseBuilder [Hodges and Sasnett 1990,
p. 166].

Functions that compute and generate information have particular importance in DLs. Active documents
[Zellweger 1992], which combine processes with more traditional document components, are likely to become
more common. As interfaces become more supportive of human tasks, information visualizations and rich
interactions supported by extensive processing [Rao et al. 1995] will become the norm.

Users affect the DL by means of functions that act upon the information in the library in some known
fashion. These functions may be persistent, opportunistic, cooperative, and goal-based. Several functions
may be involved in satisfying a user’s information need within a DL; these will typically utilize the products
of other functions inhabiting the DL. For example, the function that adds ETDs to the NDLTD will check
the authenticity of a new submission with the authentication function, store the new ETD with the archiving
function, meanwhile passing the ETD’s metadata to library cataloging functions.

A navigation function could read the user’s profile and allow collection browsing according to a preferred
view. The navigation function could solicit the services of a recommender function on the user’s behalf to
guide browsing. It might utilize the user’s past browsing history, or those of other users whose preferences
are judged similar, in forming the structure the user sees of the library. The navigation function also might
call upon the services of a query function which, in turn, would utilize the previous output of an indexer.

Each of these functions might come in several ‘flavors,’ chosen by the user, as appropriate to the task,
economic need, or resource availability. Service functions will plan the efficient execution of a given user
information need by invoking the relevant function. Distributed objects might provide an enabling technology
to realize such process and brokerage services (as is done by specialized agents in the University of Michigan
DL [Birmingham 1995]). The Knowledge Query and Manipulation Language (KQML) [Mayfield et al. 1996]
may additionally be integrated to effect cooperation between functions.

2.3 Basis in OO world, but not too OO

Indeed, with its {set, functions} tuple definition, the DL fits the definition of an object-oriented ‘object.’
Furthermore, because we define all digital objects in the collection to conform to some structure, and have
classes conform to one or more metastructures, and so on, that an object-oriented implementation of the DL
is a natural step is true at an abstract level. In the DL, on the other hand, certain functionality must protect
the data, particularly the functions that implement access restrictions based on intellectual property rights,
authenticity validation, and other security issues. This dualism is preserved by keeping the {set, functions}
paradigm intact.

Functions project a semantic interpretation of the information according to a context which may be
provided by the user or the DL, or a combination. The inputs and outputs of each function are information,
the specific nature of which is local to the form of the function. For example, an indexer function for the
NDLTD might take a stream of incoming ETDs as its input and, along with extant library items, update
its index. In addition, certain functions may not have permission to access certain data; an access manager
would intercede.

2.4 Further Reductions

Indeed, a DL could be simply {information}, with the semantic difference being provided through the infor-
mation’s metadata. Kolmogorov complexity describes the close parallels between information and functions,
and that all functions are inherently information [Li and Vitányi 1994]. It is feasible that the information
content of a DL includes functions as items in the collection, e.g., a random number generator that samples
radioactive decay could be an item in the DL collection.

Alternatively, a DL could be simply {functions}, with the semantic difference being that information is
useless unless it is active, i.e., unless some function delivers it. Every piece of information could be seen as
the result of calling a function—even the psychological paradigm of thinking is entirely functional. We feel,
in summary, that the distinction between information and function has value and should be preserved.

4 · E. A. Fox, N. A. Kipp, and P. Mather

Table 1. BNF for DL
digital library := information, functions

information := item+
item := unique identifier, metadata, digital object

metadata := title, author, date, access rights, encoding, . . .
digital object := document | log | relationship+ | . . . | item+

functions := indexer | browser | querier | item manager |
recommender | rights checker | authenticator | agent | . . .

2.5 BNF for DL

Below is a mathematical formalism for our denotational definition of a DL. We represent this with a grammar,
expressed in BNF, and shown in Table 1.

—The digital library is information and functions that process that information.

—The information in the DL is a set of items.

—The items are unique digital objects, each with semantic interpretation seen in terms of its constituent
digital object and that object’s associated metadata.

—The metadata may include the title, author, date, any access rights the information may have, and hints
on how to interpret the data’s encoding. We encourage adoption of the Dublin Core where suitable, and
extensions where their correctness and interpretation are assured [Weibel 1995]. Clues in the metadata
will tell the functions about the digital object, as will attributes inherent in the object. Furthermore,
clues in the underlying representation of the digital object will give information to functions as well (e.g.,
a filename suffix of ‘.jpg’ tells us the file may contain a JPEG-encoded image).

—The digital object could be a report, dissertation, annotation, user profile, graphic, animation, video,
etc. A digital object could be any single collectible unit, or it could be a group of items, therefore making
the grammar recursive.

—The functions listed in the grammar only hint at the complete list. The indexer function could index text,
video, audio, or other media. The browser function may browse anything from ASCII to virtual sensoria.
Other functions may include billing subsystems, document storage subsystems, network directory servers,
security servers, query splitters and recombiners, search engines, filter services, link managers, previewers
and thumbnailers, renderers, data analyzers, navigators, authoring servers, editing servers, input/output
servers, indexing tools, and agents [Gladney et al. 1994].

—The relationship tells what the relationship is, why it exists, and what the roles of each of the objects
may be. It also tells what implicit functions may be applied. There may be one, many, or arbitrary
numbers of objects of the relationship, but a relationship must have at least one. The functions tell what
explicit operations occur as the relationship endures through time and via observation. For example, a
simple ‘bibliographic reference’ is the name of one authorable relationship (see Figure 1). Traditionally
this relationship has a direction and two objects, from point of reference in the referring text to the target
of reference that occurs in a bibliography or bibliographic database. One may build complex webs of
reference using this simple construct. Furthermore, this relationship may have attributes, such as who
made the reference and why.

3. STREAMS, SPACES, STRUCTURES, AND SCENARIOS

Because the above formalism is very broad and does not use the terminology of system designers, ontological
bridges must be built before practical applications may be implemented. In information retrieval systems,
data structures like B-trees, feature spaces, hash tables, sets, strings, tries, and vector spaces are common
[Frakes and Baeza-Yates 1992, Ch. 2]. For hypertext, the focus is on graphs—which also can provide a
knowledge representation foundation for artificial intelligence. Logics can be used in AI, in information
retrieval, and in logic databases—though relations are more commonly chosen as the basis for database
management systems. Among the most comprehensive models in the information area are those attempting
to integrate information retrieval and hypertext [Chiaramella and Kheirbek 1996; Lucarella and Zanzi 1996;

Sets and Functions: A Foundation for Digital Libraries, . . . · 5

functions record activity

ETD

ref

link
bibliographic

hotspot

point of reference
target of reference

direction
(‘goto-target’)

(‘activity tracking’)

usage logs

bibliographic
database

bibentry

Fig. 1. Functional linking

.

.

.

streams

spaces

sets

functions structures

scenarios

schedule

fcs

axis

fcsloc

hierarchies
SGML

ilink

treeloc

bibloc

nameloc

software ontologymathematics HyTime forms DL

indexer

browser

itemManager

rightsChecker

authenticator

agent

queryManager

Fig. 2. Concept map for digital libraries

Fox et al. 1991]. While each of these papers relates to prototype systems, and provides interesting insights,
they begin with powerful constructs like conceptual graphs or object-oriented databases, and fail to address
the breadth of requirements for DLs [Gladney et al. 1994; Licklider 1965, p. 36-39].

In the multimedia information system arena today, the problem is more clearly visible. Books in that area
typically devote a chapter to each sub-area, with different formalisms, approaches, and technical concerns
[Khoshafian and Baker 1996]. At best, a common framework at the level of object-oriented methods is
recommended [Gibbs and Tsichritzis 1995]. Yet, with decades of experience, Englebart reminds us that
open systems and knowledge domain interoperability is the real goal [Engelbart 1991]. Since we have such
difficulty with interoperability of complex representations, it is worth considering interoperability founded
at lower levels (see first two columns of Figure 2).

3.1 Streams

Multimedia researchers will agree that streams are of fundamental importance in their work. Through the
general process of capture, and the specific one of digitization, a digital information stream can be produced
to correspond to real-world video or audio. Thus, from the analog world, where acoustic or EMF waves are

6 · E. A. Fox, N. A. Kipp, and P. Mather

continuously generated, we transform to the digital domain. To simplify our description, we assume that
streams are sets of finite sequences from some alphabet.

Images can be represented as arrays, and mapped to sequences of pixel descriptions in row or column
major order, for example. Text, as handled in a word processor, is a sequence of characters (string), and
documents or books or collections of them can be similarly represented by following some ordering (e.g., by
Library of Congress call number, then by page, then by line). While the PAT model [Frakes and Baeza-Yates
1992, Ch. 5] calls for semi-infinite strings, very long finite sequences really suffice.

Streams often are labeled by media type or semantic type. Thus, video-on-demand is representative of one
type of application, while another is exemplified by filtering and routing of streams of news, messages, and
publications. Networked information research considers logs of packets or their headers, and HCI considers
streams of keystrokes or other human/system actions. Failure analysis of retrieval systems sometimes deals
with streams of queries. Decades ago, Shannon focused on information flow as bit sequences over channels,
while recently Devlin began to develop a theory of information by considering context and situation (which
are determined by proximity in a stream) as well as strings (especially logical expressions) [Devlin 1991].

3.2 Spaces

Licklider (at MIT) briefly discussed spaces for information [Licklider 1965, p. 62] at the same time that
Salton and Lesk (at Harvard) were formulating the theory of vector spaces and first implementing it in the
SMART system. Those spaces can be ‘cleaned up’ mathematically [Raghavan and Wong 1986], or reduced
algorithmically into spaces with fewer dimensions, as in Koll’s early Weird system or with LSI [Deerwester
et al. 1990]. They can be generalized into feature spaces, suitable for clustering or probabilistic retrieval.

Humans, working with knowledge and concepts, have evolved various structures, including concept spaces.
Thus, a simple controlled vocabulary (or an enumeration of word senses) can specify a concept space analo-
gous to a vector space. Various spaces (or subspaces as in [Fox 1983]) can handle metadata like author and
date, or relationships like citation-based links.

Multimedia systems must represent real as well as synthetic spaces: 1D, 2D, 3D, or 4D. Many of the
synthetic spaces represented in virtual reality systems are analogs to real spaces, or to information spaces of
various types.

Consider this scenario: the NDLTD is a virtual space, modeling the usual university library, where the
items in the library’s collection are arranged by call number (fielded unique identifiers, where fields in the
identifier correspond to subjects, perhaps authors’ names and years, and finally serial numbers within these
categories). In this 4-space, users appear as trails through the stacks, traveling to item after item and
lingering over those they find intriguing. Users may pop in and out of the stacks as they search the collection
via queries, and have the option of viewing other characteristics of the library, particularly the other users
that are present. Perhaps they may strike up a whispered conversation, share recommendations, or even
arrange a meeting in a library cooperative-work space.

Librarians (agents or human-representations) are also users: they are present as items in the DL data set,
and they are present in both 4-space and its transform into the virtual environment.

3.3 Structures

Structures mark and measure streams. Thus, we describe information structures by imposing a grammar
onto a stream. Exploiting the well-known dualism of formal languages and automata theory, we see that
information structures can be described by machines that recognize and generate them. Therefore, we see
that functions (machines) can generate information structures from streams.

Structures are critical to DLs [Furuta 1994]. Traditional structures exist, such as those based on layout,
like pages of books, as well as logical structures, often based on hierarchies [Wilkinson and Fuller 1996,
p. 258]. Thus, articles are structural parts of journals, proceedings, or encyclopedia. Similarly, poems
have stanzas, symphonies have movements, and a researcher working with an information system works
during sessions that contain queries. Our framework allows an arbitrary (finite) number of structures to
be associated with a stream. Maybe this will help reduce use of the misnomer ‘unstructured information’;
clearly it enables handling of structured documents [Andre et al. 1989] as commonly studied in the context

Sets and Functions: A Foundation for Digital Libraries, . . . · 7

of electronic publishing.

As a result of the dualism between grammar and machine, we see that structures can be static or dynamic.
Thus, one method of video segmentation may lead to different structuring of a real-time video stream than
would another method (function). Indeed, video can be viewed either as a stream or as a structure that can
generate a stream [Ghandeharizadeh 1996], and the most powerful compression methods are model-based
(i.e., expressing a large stream in a small structure interpretable according to some model). CGI scripts and
database systems can generate varying numbers of WWW pages in response to a particular request, or a
pre-stored page can be delivered.

In our framework, one can have multiple structures, each of which describes some aspects of a stream,
and these may even vary from person to person, working with the stream. Structures can be composed,
such as when one low level structure is the basis for a number of higher level structures. This approach
solves some basic problems faced in information retrieval. In their attempt to model the typical results of
electronic publishing, the vector space and probabilistic models consider the notion of ‘document.’ However,
it is unclear what a ‘document’ should be in an encyclopedia, or inside a book, or inside a transcription of
the human dialog captured over the lifetime of a project, or from the multichannel data of a spacecraft over
years of a mission to the outer planets? With multiple structures, multiple interpretations of ‘document,’ or
retrieval into whatever structure most closely surrounds a match, are supported.

A stream or space may contain a structure, or be organized by the application of an external one. Thus,
MARC records as well as SGML or HTML documents have internal markup that describes logical structuring.
Multiple structures can be overlaid using the HyTime hyperlinking facility, and structures can be manipulated
using primitives in the Document Style Semantics and Specification Language (DSSSL). Multiple spaces can
be managed by the HyTime finite coordinate space (fcs) facility. Other streams, like those coming from
scanners or cameras, may break down into images (in raster order, after being split into frames) according
to simple algorithmic (simple language) processing. Finding the structure may be arbitrarily difficult, such
as analyzing a color image (stream or 2D-space) to extract the person, cat, and house depicted.

Pointers into a stream, space, or structure can mark the extent of some part of a structure, much like
tags can delineate extent in a stream. When a stream is read-only, or too large to copy, pointers may be
necessary since tags cannot work. The Hyper-G/Hyperwave system can handle ‘hot-links’ from an anchor
whose extent in text or images is specified externally from the stream. Clearly, internal versus external
location of structuring are equivalent and interchangeable, though for performance or other reasons (e.g.,
packaging, security) one may be preferable (e.g., HTML pages can be shipped and carry anchor and link
information, while Hyper-G anchor details must be accessed through a distributed object-oriented data to
get the same result; on the other hand, Hyper-G allows links to be followed in both directions). Modern
views of documents consider their structure in terms of streams, hierarchies, and composites as an extension
of the traditional view of internal content structure plus links [DeRose and Durand 1994, p. 21-22].

3.4 Scenarios

Scenarios can be used as part of the process of designing information systems [Carroll 1995]. Humans can
quickly grasp the potentials and complexities of DLs through scenarios. Human information needs, and the
processes of satisfying them in the context of DLs, are well suited to description with scenarios, including these
key types [Wilkinson and Fuller 1996, p. 260]: fact-finding, learning, gathering, and exploring. Additionally,
scenarios can aid understanding of how DLs affect organizations and society, and how challenges to support
social needs relate to underlying assumptions of DLs [Levy and Marshall 1995]. Scenarios can help us
consider the complexities of current publishing methods, as well as how they may be reshaped in the era of
DLs, considering publishing paths, associated participants, and publication functions [Wiederhold 1995].

Scenarios tell what happens to the streams, in the spaces, and through the structures. Scenarios let us
visualize the spaces, by setting up a stream from views of the structure. To the digital library, scenarios
supply the verbs, where streams, spaces, and structures supply the subjects and objects. For this reason, we
use scenarios to define the functions of a digital library.

8 · E. A. Fox, N. A. Kipp, and P. Mather

4. MAPPING OF BNF TO SGML/HYTIME DEFINITION

We feel that HyTime offers an excellent computer science formalism upon which to build a DL. SGML, the
parent of HyTime, is the language for document structuring, and it even defines a structuring mechanism—
Document Type Definition (DTD)—for representing a document in terms of its BNF. SGML, the Standard
Generalized Markup Language [International Organization for Standardization 1986a], is useful for adding
structure to streams of data. HyTime, the Hypermedia/Time-based Structuring Language, is largely encoded
in SGML, and represents relationships between information; it is useful for encoding connection between
structures, for binding functions to information, and for declaring metastructures of information that contain
streams and stream connections.

HyTime standardizes hundreds of concepts and utilities found in the widest variety of hypermedia encod-
ings. It incorporates the Dexter model [Leggett and Schnase 1994] for static document encoding and the
Amsterdam model [Hardman et al. 1994] for linking to and from events in schedules (like frames in a video
or animation). Documents encoded in SGML/HyTime are transportable across networks and through time.
For these reasons, HyTime documents can survive technological innovation and vendor-specific encodings.

Below we present the mapping from the abstract DL concepts in Table 1 to the applicable HyTime
constructs. Additionally, we detail the application of the HyTime architecture to the DL problem and
indicate a path for its implementation. (Readers unfamiliar with SGML and HyTime are encouraged to read
overviews [Goldfarb 1991; Newcomb et al. 1991].)

4.1 ‘Digital Library’ maps to HyTime Grove

The HyTime ‘grove’ construct is a set of SGML entities (SGML documents and other data entities named
by SGML documents). The grove is defined as a set of entity declarations in the root document of a HyTime
system. Groves are useful for collecting heterogeneous document sets into a single, navigable structure. All
information and functions will be encoded as data entities and documents within the HyTime grove for the
digital library.

4.2 ‘Information’ maps to HyTime Architectural Forms and Documents

Information in a DL is a set of items. Each item is a relationship between a unique identifier, metadata, and
a digital object. This connection is neatly encoded using a HyTime independent link (ilink) architectural
form with a unique identifier and two ‘linkends,’ one to refer to the metadata and one to refer to the
associated digital object. Indeed, all the structure in the DL can be represented using HyTime ilinks.

4.3 ‘Unique Identifier’ maps to HyTime Item Identification

For any library to function, all information present must be unique and identifiable. Therefore the HyTime
implementation of the DL will employ unique identification of items. The unique identifier will often contain
relative naming from an agreed universal starting point, then repeatedly qualify until the named object is
reached. The final qualifier of the ‘item’ is its SGML unique identifier (ID). Uniqueness may be guaranteed
trivially, by consulting the index of unique names (O(logn) in the worst case), and generating new identifiers
through a serializing protocol.

Using unique identifiers, automated processes may locate the information in the DL. Furthermore, users
may use the names associated with the different information objects in the collection as anchors of their own
hyperlinks, e.g., for annotating other works in the NDLTD, and making bibliographic references to other
theses and dissertations in the collection.

In short, HyTime conceptually solves the naming problem that plagues digital library design.

4.4 ‘Substructures of Digital Objects’ maps to HyTime Location Addressing

Suppose an ETD author wishes to refer to a particular paragraph in another thesis or dissertation. The
target is not an entire item in the collection, instead it is part of one. Further, suppose that it does not have
a unique ID. Substructures of items within the DL may be identified using HyTime architectural forms (see
Table 2). For example, each of the location address forms may be used successively as a ‘location ladder’
to qualify real and logical space. Location address ladders may contain queries to extract information from

Sets and Functions: A Foundation for Digital Libraries, . . . · 9

Table 2. HyTime location address architectural forms
Data Type HyTime Construct Abbreviation

Object in SGML hierarchy tree location address treeloc

Object positioned on coordinate axes

(diorama or animation)

finite coordinate space address fcsloc

Named external digital object named location address nameloc

Named or positioned external non-
digital object

bibliographic location address bibloc

a domain. Also, a location address may refer to an aggregate of disparate, heterogeneous objects. This is
useful when one is resolving a query for all the ETDs available from a certain school or within a given major
discipline.

4.5 ‘Relationships’ maps to HyTime Ilinks

A relationship comprises {name, objects, functions}. The relationship name corresponds to the ‘generic
identifier’ of the ilink. The name of each object as it relates to the ilink (like point of reference, target
document) become HyTime ‘anchor roles’ of the ilink. The locations of the objects, in the order they
appear, become the HyTime ‘linkends.’ Furthermore, the existence of a relationship implies functionality.
The system will present a ‘hotspot’ from the referring object’s location and a ‘goto-target’ functionality
when the user selects the hotspot. Other functions may be called at activation of this relationship, record
the traversal for log-keeping, billing, or load evaluation.

To bind function calls to relationships, we use HyTime ‘activity tracking.’ Bound functions are called for
each activation of the ilink. In the NDLTD, authors of referenced works could be notified when their ETD
is the target of a bibliographic link. Because access rights are in the metadata record stored with the digital
object, and all are hyperlinked by the ‘item’ ilink, then access rights are always available for each digital
object. Functions that provide data to users of the DL will consult the linked access rights to determine
permission and to invoke a billing function as necessary.

4.6 ‘Non-traditional Items’ maps to HyTime Elements

DLs contain more that just traditional collection items. The data structures that are generated by indexing
functions are items in the DL. The index itself is a ilink that connects a multitude of index entry tuples. Each
index entry is also an ilink that connects the term and all its occurrences in the collection. Additionally, the
user is an item in the DL. The user’s profile will have an SGML encoding and be available as the anchors of
any sort of hyperlink that the DL supports. Further, the user will have a position in the stream of time-based
usage logs. Because of the consistent, well-understood structure of each possible constituent in the DL, and
the standardized encoding thereof, the system is provably reducible to a simple HyTime encoding. We leave
for future work the grammatical description of each ilink type and each defined interconnection, as well as
the syntactic HyTime and SGML instantiation of each.

4.7 ‘Streams’ maps to HyTime Finite Coordinate Space (fcs)

Using HyTime, one may construct one-dimensional fcs data structures and fill them with events and groups
of events. Each event contains an object, be it an item in the collection, a timepiece, calendar, a user, a
librarian, or an agent of either.

The flow of the objects through time is measured on the time axis, the primary axis of the finite coordinate
space. Objects in a collection flow from shelf to user to shelf, or to multiple users at once. Objects in the
DL may undergo revision and versioning, and the fcs is an excellent device to track changes in the object as
time passes.

4.8 ‘Spaces’ maps to HyTime fcs

The HyTime fcs encoding scheme builds and stores the virtual spaces required by a fully-functional DL.
An fcs may contain an arbitrary number of axes, and therefore allow events to be scheduled with position

10 · E. A. Fox, N. A. Kipp, and P. Mather

and extent along each axis, in space and in time. Entire virtual worlds may be created using fcss based
on the contents and hyperlinks of a digital library. Users may manipulate objects in time, perhaps leaving
annotations for one another in the stacks. HyTime also has facilities to project fcss into other fcss, perhaps
even flattening an entire spatial dimension. In this way, all of a user’s movements can be observed as a
stream through the stacks.

4.9 ‘Scenarios’ map to HyTime fcs and ilink

System administrators for the DL require different views of the DL. They can use fcs models to create a
visualization of the DL state, that, for example, describes caching and flow of materials from one physical
site to another. These fcss could show the physical arrangement of servers and can show the connections
between them. As traffic increases, the arcs between the depicted servers could change color or the diameter
of the arc could increase. If one site becomes thick with traffic, the administrator could arrange for objects
to be redistributed to a site nearer the user’s physical position. After viewing such an fcs, users may request
that a set of desired digital objects be replicated to decrease latency over long stretches of crowded network.

Visualization is vital for all users of the DL. With such a vast and heterogeneous collection available, users
navigating through the collection of ilinks will easily become ‘lost in hyperspace.’ Visualizing where they
are in the hyperlinking structure can help them visualize relevance, clustering, and associated materials,
and therefore allow them to find more accurate information faster. All of this is possible and natural with
HyTime’s ilink and fcs constructs.

4.10 HyTime Engine

The bookkeeping for hyperlinking and scheduling requires a HyTime Engine: a software toolkit that has an
extensive API for manipulating HyTime constructs within an (distributed) object database.

Various DL functions, like indexing, user management, etc., are written using the HyTime Engine API calls
plus calls to other DL functions. These routines run at various times as they are needed (lazy evaluation)
by users or intrinsic DL processes. Each of these applications is intended to be lightweight and singular of
purpose so that monolithic construction of the DL can be avoided. The management of the HyTime layer is
well-defined so that designers avoid exponential numbers of changes of the application layer.

This framework for specification enables a multitude of software implementations (DL products), e.g.,

—a single-site system with one running DL program (e.g., to serve a private collection to a single user),

—a distributed database system with many servers performing data-lookups for client-side DL functions,

—a distributed DL with peer-level interaction between sites as well as a cross-distributed data layer,

—an object-oriented substrate using any of the popular object databases or distributed object databases,

—bus-based (as at Stanford [Stanford Digital Library Group 1995]), and

—agent-based with users and information robots [Birmingham 1995].

5. CONCLUSION: THE DIGITAL LIBRARY APPLICATION

The separation of definitions (S4) within the information and functions of a DL simplifies its implementation.
Further, the use of HyTime to structure the streams of data and perhaps to impose a spatial ordering on it
makes the set of information in the DL manageable. HyTime adds refinement to the ontology required for a
robust DL implementation. That leads to using HyTime engines to manage the transport protocol between
the various heterogeneous sites in the NDLTD (see Figure 3). Each federated system interacts with the rest
of the NDLTD through a conversation between HyTime engines.

We plan to continue work on our framework in the context of NDLTD. Our approach will be to collect
requirements from libraries and graduate schools interested in the project, to translate those into S4 and
thence into HyTime, and to specify an API/protocol for NDLTD as an open digital library.

We have provided scenarios for the NDLTD. One can easily see that domain and range of each function
is the information within the digital library combined with the information that travels to and from each
human user. Having detailed the data model, we leave the exact specification of the set of scenarios, spaces,
and functions to the architects and users of a streamed and structured digital library.

Sets and Functions: A Foundation for Digital Libraries, . . . · 11

= HyTime interface

Stanford ‘Bus’

NDLTD

IBM ‘Modules’

Dienst ‘Distributed Servers’

Future DL Architectures

Michigan ‘Agents‘

Fig. 3. NDLTD though open DL integration

6. ACKNOWLEDGMENTS

Special thanks go to J.C.R. Licklider and Gerard Salton for training and guidance. Layne Watson guided the
early development of the basic formalism. The National Science Foundation, through grants CDA-9312611
and IRI-9116991, as well as SURA and U.S. Dept. of Education, FIPSE Program (for their support of our
thesis and dissertation project), provided support.

REFERENCES

Andre, J., Furuta, R., and Quint, V. Eds. 1989. Structured Documents. Cambridge University Press, Cambridge.

Belkin, N. J., Kantor, P., Fox, E. A., and Shaw, J. A. 1995. Combining the evidence of multiple query representations

for information retrieval. Information Processing & Management 31, 3 (May-June), 431–448.

Birmingham, W. P. 1995. An agent-based architecture for digital libraries. D-Lib Magazine.

Carroll, J. M. 1995. Scenario-Based Design: Envisioning work and technology in system design. John Wiley, New

York.

Chiaramella, Y. and Kheirbek, A. 1996. An integrated model for hypermedia and information retrieval. In M. Agosti

and A. Smeaton Eds., Information Retrieval and Hypertext , pp. 139–178. Boston: Kluwer Academic Publishers.

Deerwester, S., Dumais, S., Furnas, T., Landauer, T., and Harshman, R. 1990. Indexing by latent semantic analysis.
J. of the ASIS 41, 6, 391–407.

DeRose, S. J. and Durand, D. G. 1994. Making Hypermedia Work: A User’s Guide to HyTime. Kluwer Academic

Publishers, Boston.

Devlin, K. 1991. Logic and Information. Cambridge University Press, Cambridge.

Engelbart, D. C. 1991. Knowledge-domain interoperability and an open hyperdocument system. In E. Berk and

J. Devlin Eds., Hypertext/Hypermedia Handbook , pp. 397–413. New York: McGraw-Hill, Inc.

Fox, E. A. 1983. Extending the Boolean and Vector Space Models of Information Retrieval with P-Norm Queries and

Multiple Concept Types. Ph. D. thesis, Cornell University Dept. of Computer Science. Available from University Micro-
films Int.

Fox, E. A., Chen, Q. F., and France, R. K. 1991. Integrating search and retrieval with hypertext. In E. Berk and

J. Devlin Eds., Hypertext/Hypermedia Handbook , pp. 329–355. New York: McGraw-Hill, Inc.

Fox, E. A., Eaton, J. L., McMillan, G., Kipp, N. A., Weiss, L., Arce, E., and Guyer, S. 1996. National Digital

Library of Theses and Dissertations: A scalable and sustainable approach to unlock university resources. D-Lib Magazine.

Frakes, W. and Baeza-Yates, R. Eds. 1992. Information Retrieval: Data Structures & Algorithms. Prentice-Hall,
Englewood Cliffs, NJ.

Furuta, R. 1994. Defining and using structure in digital documents. In J. L. Schnase, J. J. Leggett, R. K. Furuta,

and T. Metcalfe Eds., Proceedings of Digital Libraries ’94: The First Annual Conference on the Theory and Practice

of Digital Libraries (College Station, TX, June 19-21, 1994), pp. 139–145. Texas A&M University.

Ghandeharizadeh, S. 1996. Stream-based versus structured video objects: Issues, solutions, and challenges. In V. S.

Subrahmanian and S. Jajodia Eds., Multimedia Database Systems: Issues and Research Directions , pp. 215–236.

12 · E. A. Fox, N. A. Kipp, and P. Mather

Berlin: Springer-Verlag.

Ghias, A., Logan, J., Chamberlin, D., and Smith, B. C. 1995. Multimedia documents with elastic time. In P. Zell-

weger Ed., Proceedings ACM Multimedia ’95: The Third ACM International Multimedia Conference and Exhibition
(New York, November 5-9, 1995), pp. 143–154. ACM Press.

Gibbs, S. J. and Tsichritzis, D. C. 1995. Multimedia Programming: Objects, Environments and Frameworks. ACM

Press Books, ACM Press in NY and Addison-Wesley in Reading MA.

Gladney, H. M., Fox, E. A., Ahmed, Z., Ashany, R., Belkin, N. J., and Zemankova, M. 1994. Digital library: Gross

structure and requirements: Report from a March 1994 Workshop. In J. L. Schnase, J. J. Leggett, R. K. Furuta, and

T. Metcalfe Eds., Proceedings of Digital Libraries ’94: The First Annual Conf. on the Theory and Practice of Digital

Libraries (College Station, TX, June 19-21, 1994), pp. 101–107. Hypermedia Research Laboratory, Dept. of Computer
Science, Texas A&M Univ. Electronic proceedings at http://atg1.WUSTL.edu/DL94.

Goldfarb, C. F. 1991. The SGML Handbook. Oxford University Press.

Hardman, L., Bulterman, D. C. A., and van Rossum, G. 1994. The Amsterdam hypermedia model: Adding time and
context to the Dexter model. Commun. of the ACM 37, 2 (Feb.), 50–63.

Hodges, M. E. and Sasnett, R. M. 1990. Multimedia Computing: Case Studies from MIT Project Athena. Addison-
Wesley Publishing Company, Reading, MA.

International Organization for Standardization Ed. 1986a. ISO 8879: Information Processing — Text and Office
Information Systems — Standard Generalized Markup Language. ISO.

International Organization for Standardization Ed. 1992b. ISO/IEC 10744: Hypermedia / Time-based Structur-

ing Language: HyTime. ISO/IEC.

Khoshafian, S. and Baker, A. B. 1996. MultiMedia and Imaging Databases. Morgan Kaufmann, San Francisco.

Leggett, J. J. and Schnase, J. L. 1994. Viewing Dexter with open eyes. Commun. of the ACM 37, 2, 76–86.

Levy, D. M. and Marshall, C. C. 1995. Going digital: A look at assumptions underlying digital libraries. Commun.
of the ACM 38, 4 (Apr.), 77–84.

Li, M. and Vitányi, P. M. B. 1994. An Introduction to Kolmogorov Complexity and its Applications. Addison-Wesley.

Licklider, J. C. R. 1965. Libraries of the Future. The MIT Press, Cambridge, MA.

Lucarella, D. and Zanzi, A. 1996. Information modelling and retrieval in hypermedia systems. In M. Agosti and

A. Smeaton Eds., Information Retrieval and Hypertext , pp. 121–138. Boston: Kluwer Academic Publishers.

Lynch, C. and Garcia-Molina, H. Eds. 1995. Interoperability, Scaling, and the Digital Libraries Research Agenda:

A Report on the May 18-19, 1995 IITA Digital Libraries Workshop (Palo Alto, CA, Aug. 22, 1995). Stanford Univ.
http://www-diglib.stanford.edu/diglib/pub/reports/iita-dlw/main.html.

Mayfield, J., Labrou, Y., and Finin, T. 1996. Evaluation of KQML as an agent communication language. In

M. Wooldridge, J. P. Miller, and M. Tambe Eds., Intelligent Agents Volume II—Proceedings of the 1995 Workshop
on Agent Theories, Architectures, and Languages , Lecture Notes in Artificial Intelligence (1996). Springer-Verlag.

Newcomb, S. R., Kipp, N. A., and Newcomb, V. T. 1991. The HyTime hypermedia/time-based document structuring
language. Commun. of the ACM 34, 11 (Nov.), 67–83.

Raghavan, V. V. and Wong, S. K. M. 1986. A critical analysis of vector space model for information retrieval. J. of
the ASIS 37, 5 (Sept.), 279–287.

Rao, R., Pedersen, J. O., Hearst, M. A., Mackinlay, J. D., Card, S. K., Masinter, L., Halvorsen, P.-K., and

Robertson, G. G. 1995. Rich interaction in the digital library. Commun. of the ACM 38, 4 (Apr.), 29–39.

Shivakumar, N. and Garcia-Molina, H. 1995. SCAM: A copy detection mechanism for digital documents. In J. L.

Schnase, J. J. Leggett, R. K. Furuta, and T. Metcalfe Eds., Proceedings of Digital Libraries ’95: The Second
Annual Conference on the Theory and Practice of Digital Libraries, Austin, TX (College Station, TX, June 11-13,

1995), pp. 155–163. Texas A&M University.

Stanford Digital Library Group. 1995. The Stanford digital library project. Commun. of the ACM 38, 4 (Apr.),

59–60.

Weibel, S. 1995. Metadata: The foundation of resource description. D-Lib Magazine.

Wiederhold, G. 1995. Digital libraries, value, and productivity. Commun. of the ACM 38, 4 (Apr.), 85–96.

Wilkinson, R. and Fuller, M. 1996. Integration of information retrieval and hypertext via structure. In M. Agosti

and A. Smeaton Eds., Information Retrieval and Hypertext , pp. 257–271. Boston: Kluwer Academic Publishers.

Zellweger, P. T. 1992. Toward a model for active multimedia documents. In M. M. Blattner and R. B. Dannenberg

Eds., Multimedia Interface Design, pp. 39–52. Reading, MA: ACM Press and Addison-Wesley Publishing Company.

